Numerical Analysis of Reinforced Concrete Frame Structures with Graphene Oxide and Study of the Earthquake-Resistant Behavior of the Structures Considering the Earthquake in Turkey and Syria (2023)

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:Fibers vol. 13, no. 10 (2025), p. 132-164
Prif Awdur: Domínguez-Santos, D
Cyhoeddwyd:
MDPI AG
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
Disgrifiad
Crynodeb:The earthquake of 6 February 2023, in Turkey and Syria, was catastrophic for many existing buildings. Various reasons have been given to try to understand what happened, since after 2000, changes in construction methods were introduced in this area, with the aim of improving buildings. In this research, the behavior of frame buildings with a concrete structure is analyzed. To do this, graphene oxide (GO) is introduced into traditional mixtures to improve the most deficient mechanical characteristics of traditional concrete. Laboratory tests performed with GO in traditional concrete mixtures produce improvements in the mechanical analyses performed, essential characteristics for improving the structural behavior of the frame models analyzed in this research. The mechanical results show increases of 13% in the modulus of elasticity, 22% in compression strength tests, 72% in flexural-tensile strength tests, and 14% in ductility, in addition to a 4% reduction in the density of the mixture. These characteristics are essential to understand the structural improvement of the models, helping to reduce the seismic vulnerability of the structures. To reach these conclusions, static and dynamic analyses (using records of the most intense seismic activity that occurred in Turkey in 2023) are performed on three frames of 5, 10, and 20 stories in height, considering the mechanical properties of the new mixtures (traditional and GO) obtained in the laboratory. The results obtained in the analyses of the frame models using GO in the new mixtures show improvements in the structural performance of the frames, improvements that increase with increasing height of the structures. To conclude this investigation, the analyses performed on the frame models are extended with the introduction of brick walls in the exterior bays of the bare frames, a solution commonly used to improve the resistant behavior of these structures, determining a structural improvement of the models, due to the high strength and stiffness that these infill walls impart to the bare frames.
ISSN:2079-6439
DOI:10.3390/fib13100132
Ffynhonnell:ABI/INFORM Global