A Framework for Evaluating the Reliability of Health Monitoring Technologies Based on Ambient Intelligence

Gardado en:
Detalles Bibliográficos
Publicado en:Information vol. 16, no. 10 (2025), p. 833-849
Autor Principal: Shakes, Scott Mfundo
Outros autores: Nobert, Jere, Sibanda Khulumani, Domor, Mienye Ibomoiye
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265911745
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16100833  |2 doi 
035 |a 3265911745 
045 2 |b d20250101  |b d20251231 
084 |a 231474  |2 nlm 
100 1 |a Shakes, Scott Mfundo  |u Department of Computer Science, University of Fort Hare, Alice 5700, South Africa; sscott@ufh.ac.za 
245 1 |a A Framework for Evaluating the Reliability of Health Monitoring Technologies Based on Ambient Intelligence 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The reliability of health monitoring technologies has become increasingly critical as Ambient Intelligence (AmI) becomes integrated into healthcare. However, a significant gap remains in systematically evaluating reliability, particularly in resource-constrained environments. This study addresses this gap by introducing a comprehensive framework specifically designed to evaluate the reliability of AmI-based health monitoring systems. The proposed framework combines robust simulation-based techniques, including reliability block diagrams (RBDs) and Monte Carlo Markov Chain (MCMC), to evaluate system robustness, data integrity, and adaptability. Validation was performed using real-world continuous glucose monitoring (CGM) and heart rate monitoring (HRM) systems in elderly care. The results demonstrate that the framework successfully identifies critical vulnerabilities, such as rapid initial system degradation and notable connectivity disruptions, and effectively guides targeted interventions that significantly enhance overall system reliability and user trust. The findings contribute actionable insights for practitioners, developers, and policymakers, laying a robust foundation for further advancements in explainable AI, proactive reliability management, and broader applications of AmI technologies in healthcare. 
653 |a Monte Carlo simulation 
653 |a Patient safety 
653 |a Failure 
653 |a Markov chains 
653 |a System reliability 
653 |a Artificial intelligence 
653 |a Health care 
653 |a Heart rate 
653 |a Glucose monitoring 
653 |a Telemedicine 
653 |a Adaptive technology 
653 |a Sensors 
653 |a Elder care 
653 |a Wearable computers 
653 |a Connectivity 
653 |a Block diagrams 
653 |a Ambient intelligence 
653 |a Monitoring systems 
653 |a Explainable artificial intelligence 
653 |a Robustness 
653 |a Markov analysis 
653 |a Case studies 
700 1 |a Nobert, Jere  |u Department of Computer Science, University of Fort Hare, Alice 5700, South Africa; sscott@ufh.ac.za 
700 1 |a Sibanda Khulumani  |u Department of Applied Informatics and Mathematical Sciences, Walter Sisulu University, East London 5200, South Africa; ksibanda@wsu.ac.za 
700 1 |a Domor, Mienye Ibomoiye  |u Center for Artificial Intelligence and Multidisciplinary Innovations, Department of Auditing, College of Accounting Sciences, University of South Africa, Pretoria 0002, South Africa; emienyid@unisa.ac.za 
773 0 |t Information  |g vol. 16, no. 10 (2025), p. 833-849 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265911745/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265911745/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265911745/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch