Research on Aerodynamic Load Simulation Techniques for Floating Vertical-Axis Wind Turbines in Basin Model Test

Gardado en:
Detalles Bibliográficos
Publicado en:Journal of Marine Science and Engineering vol. 13, no. 10 (2025), p. 1924-1944
Autor Principal: Cao Qun
Outros autores: Chen, Ying, Zhang, Kai, Zhang, Xinyu, Cheng Zhengshun, Jiang Zhihao, Chen, Xing
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265915591
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13101924  |2 doi 
035 |a 3265915591 
045 2 |b d20251001  |b d20251031 
084 |a 231479  |2 nlm 
100 1 |a Cao Qun  |u China Ship Scientific Research Center, Wuxi 214064, China; chenying@cssrc.com.cn (Y.C.); kaizhang@cssrc.com.cn (K.Z.); zhangxy@cssrc.com.cn (X.Z.); chenxing@cssrc.com.cn (X.C.) 
245 1 |a Research on Aerodynamic Load Simulation Techniques for Floating Vertical-Axis Wind Turbines in Basin Model Test 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Floating vertical−axis wind turbines present unique advantages for deep−water offshore deployments, but their basin model testing encounters significant challenges in aerodynamic load simulation due to Reynolds scaling effects. While Froude−scaled experiments accurately replicate hydrodynamic behaviors, the drastic reduction in Reynolds numbers at the model scale leads to substantial discrepancies in aerodynamic forces compared to full−scale conditions. This study proposed two methodologies to address these challenges. Fully physical model tests adopt a “physical wind field + rotor model + floating foundation” approach, realistically simulating aerodynamic loads during rotor rotation. Semi−physical model tests employ a “numerical wind field + rotor model + physical floating foundation” configuration, where theoretical aerodynamic loads are obtained through numerical calculations and then reproduced using controllable actuator structures. For fully physical model tests, a blade reconstruction framework integrated airfoil optimization, chord length adjustments, and twist angle modifications through Taylor expansion−based sensitivity analysis. The method achieved thrust coefficient similarity across the operational tip−speed ratio range. For semi−physical tests, a cruciform−arranged rotor system with eight dynamically controlled rotors and constrained thrust allocation algorithms enabled the simultaneous reproduction of periodic streamwise/crosswind thrusts and vertical−axis torque. Numerical case studies demonstrated that the system effectively simulates six−degree−of−freedom aerodynamic loads under turbulent conditions while maintaining thrust variation rates below 9.3% between adjacent time steps. These solutions addressed VAWTs’ distinct aerodynamic complexities, including azimuth−dependent Reynolds number fluctuations and multidirectional force coupling, which conventional methods fail to accommodate. The developed techniques enhanced the fidelity of floating VAWT basin tests, providing critical experimental validation tools for emerging offshore wind technologies. 
653 |a Load 
653 |a Offshore 
653 |a Wind power 
653 |a Wind fields 
653 |a Mathematical analysis 
653 |a Aerodynamic loads 
653 |a Azimuth 
653 |a Model basins 
653 |a Aerodynamic forces 
653 |a Reynolds number 
653 |a Sensitivity analysis 
653 |a Cruciform tests 
653 |a Thrust 
653 |a Rotors 
653 |a Floating structures 
653 |a Physical tests 
653 |a Model testing 
653 |a Turbines 
653 |a Simulation 
653 |a Velocity 
653 |a Aerodynamics 
653 |a Crosswinds 
653 |a Torque 
653 |a Controllability 
653 |a Loads (forces) 
653 |a Taylor series 
653 |a Actuators 
653 |a Vertical axis wind turbines 
653 |a Floating 
653 |a Environmental 
700 1 |a Chen, Ying  |u China Ship Scientific Research Center, Wuxi 214064, China; chenying@cssrc.com.cn (Y.C.); kaizhang@cssrc.com.cn (K.Z.); zhangxy@cssrc.com.cn (X.Z.); chenxing@cssrc.com.cn (X.C.) 
700 1 |a Zhang, Kai  |u China Ship Scientific Research Center, Wuxi 214064, China; chenying@cssrc.com.cn (Y.C.); kaizhang@cssrc.com.cn (K.Z.); zhangxy@cssrc.com.cn (X.Z.); chenxing@cssrc.com.cn (X.C.) 
700 1 |a Zhang, Xinyu  |u China Ship Scientific Research Center, Wuxi 214064, China; chenying@cssrc.com.cn (Y.C.); kaizhang@cssrc.com.cn (K.Z.); zhangxy@cssrc.com.cn (X.Z.); chenxing@cssrc.com.cn (X.C.) 
700 1 |a Cheng Zhengshun  |u State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; zhengshun.cheng@sjtu.edu.cn (Z.C.); jiang9510@sjtu.edu.cn (Z.J.) 
700 1 |a Jiang Zhihao  |u State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; zhengshun.cheng@sjtu.edu.cn (Z.C.); jiang9510@sjtu.edu.cn (Z.J.) 
700 1 |a Chen, Xing  |u China Ship Scientific Research Center, Wuxi 214064, China; chenying@cssrc.com.cn (Y.C.); kaizhang@cssrc.com.cn (K.Z.); zhangxy@cssrc.com.cn (X.Z.); chenxing@cssrc.com.cn (X.C.) 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 10 (2025), p. 1924-1944 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265915591/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265915591/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265915591/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch