Hybrid Regularized Variational Minimization Method to Promote Visual Perception for Intelligent Surface Vehicles Under Hazy Weather Condition

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Journal of Marine Science and Engineering vol. 13, no. 10 (2025), p. 1991-2011
Päätekijä: Li Peizheng
Muut tekijät: Qiao Dayong, Luo Caofei, Wan Desong, Li, Guilian
Julkaistu:
MDPI AG
Aiheet:
Linkit:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3265915948
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13101991  |2 doi 
035 |a 3265915948 
045 2 |b d20251001  |b d20251031 
084 |a 231479  |2 nlm 
100 1 |a Li Peizheng  |u School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; lipeizheng@mail.nwpu.edu.cn 
245 1 |a Hybrid Regularized Variational Minimization Method to Promote Visual Perception for Intelligent Surface Vehicles Under Hazy Weather Condition 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Intelligent surface vehicles, including unmanned surface vehicles (USVs) and autonomous surface vehicles (ASVs), have gained significant attention from both academic and industrial communities. However, shipboard maritime images captured under hazy weather conditions inevitably suffer from a blurred, distorted appearance. Low-quality maritime images can lead to negative effects on high-level computer vision tasks, such as object detection, recognition and tracking, etc. To avoid the negative influence of low-quality maritime images, it is necessary to develop a visual perception enhancement method for intelligent surface vehicles. To generate satisfactory haze-free maritime images, we propose development of a novel transmission map estimation and refinement framework. In this work, the coarse transmission map is obtained by the weighted fusion of transmission maps generated by dark channel prior (DCP)- and luminance-based estimation methods. To refine the transmission map, we take the segmented smooth feature of the transmission map into account. A joint variational framework with total generalized variation (TGV) and relative total variation (RTV) regularizers is accordingly proposed. The joint variational framework is effectively solved by an alternating-direction numerical algorithm, which decomposes the original nonconvex nonsmooth optimization problem into several subproblems. Each subproblem could be efficiently and easily handled using the existing optimization algorithm. Finally, comprehensive experiments are conducted on synthetic and realistic maritime images. The imaging results have illustrated that our method can outperform or achieve comparable results with other competing dehazing methods. The promoted visual perception is beneficial to improve navigation safety for intelligent surface vehicles under hazy weather conditions. 
653 |a Visual perception 
653 |a Deep learning 
653 |a Algorithms 
653 |a Surface vehicles 
653 |a Weather 
653 |a Autonomous surface vehicles 
653 |a Unmanned vehicles 
653 |a Computer vision 
653 |a Maps 
653 |a Numerical analysis 
653 |a Neural networks 
653 |a Optimization 
653 |a Navigational safety 
653 |a Regularization methods 
653 |a Image quality 
653 |a Perception 
653 |a Object recognition 
653 |a Navigation safety 
653 |a Vehicles 
653 |a Parameter estimation 
653 |a Environmental 
700 1 |a Qiao Dayong  |u School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; lipeizheng@mail.nwpu.edu.cn 
700 1 |a Luo Caofei  |u China E-Tech (Ningbo) Maritime Electronics Research Institute Co., Ltd., Ningbo 315040, China; 12331136@zju.edu.cn (C.L.); wandesong2020@163.com (D.W.); gli.lee@foxmail.com (G.L.) 
700 1 |a Wan Desong  |u China E-Tech (Ningbo) Maritime Electronics Research Institute Co., Ltd., Ningbo 315040, China; 12331136@zju.edu.cn (C.L.); wandesong2020@163.com (D.W.); gli.lee@foxmail.com (G.L.) 
700 1 |a Li, Guilian  |u China E-Tech (Ningbo) Maritime Electronics Research Institute Co., Ltd., Ningbo 315040, China; 12331136@zju.edu.cn (C.L.); wandesong2020@163.com (D.W.); gli.lee@foxmail.com (G.L.) 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 10 (2025), p. 1991-2011 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265915948/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265915948/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265915948/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch