Integration of Industrial Internet of Things (IIoT) and Digital Twin Technology for Intelligent Multi-Loop Oil-and-Gas Process Control

Guardado en:
Detalles Bibliográficos
Publicado en:Machines vol. 13, no. 10 (2025), p. 940-968
Autor principal: Allahloh Ali Saleh
Otros Autores: Sarfraz Mohammad, Ghaleb, Atef M, Dabwan Abdulmajeed, Ahmed, Adeeb A, Al-Shayea, Adel
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265918948
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13100940  |2 doi 
035 |a 3265918948 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Allahloh Ali Saleh  |u Department of Electrical Engineering, Zakir Husain College of Engineering and Technology (ZHCET), Aligarh Muslim University, Aligarh 202002, India; msarfraz@zhcet.ac.in 
245 1 |a Integration of Industrial Internet of Things (IIoT) and Digital Twin Technology for Intelligent Multi-Loop Oil-and-Gas Process Control 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The convergence of Industrial Internet of Things (IIoT) and digital twin technology offers new paradigms for process automation and control. This paper presents an integrated IIoT and digital twin framework for intelligent control of a gas–liquid separation unit with interacting flow, pressure, and differential pressure loops. A comprehensive dynamic model of the three-loop separator process is developed, linearized, and validated. Classical stability analyses using the Routh–Hurwitz criterion and Nyquist plots are employed to ensure stability of the control system. Decentralized multi-loop proportional–integral–derivative (PID) controllers are designed and optimized using the Integral Absolute Error (IAE) performance index. A digital twin of the separator is implemented to run in parallel with the physical process, synchronized via a Kalman filter to real-time sensor data for state estimation and anomaly detection. The digital twin also incorporates structured singular value (<inline-formula>μ</inline-formula>) analysis to assess robust stability under model uncertainties. The system architecture is realized with low-cost hardware (Arduino Mega 2560, MicroMotion Coriolis flowmeter, pneumatic control valves, DAC104S085 digital-to-analog converter, and ENC28J60 Ethernet module) and software tools (Proteus VSM 8.4 for simulation, VB.Net 2022 version based human–machine interface, and ML.Net 2022 version for predictive analytics). Experimental results demonstrate improved control performance with reduced overshoot and faster settling times, confirming the effectiveness of the IIoT–digital twin integration in handling loop interactions and disturbances. The discussion includes a comparative analysis with conventional control and outlines how advanced strategies such as model predictive control (MPC) can further augment the proposed approach. This work provides a practical pathway for applying IIoT and digital twins to industrial process control, with implications for enhanced autonomy, reliability, and efficiency in oil and gas operations. 
653 |a Nyquist plots 
653 |a Proportional integral derivative 
653 |a Routh-Hurwitz criterion 
653 |a Visual Basic 
653 |a Ethernet 
653 |a Optimization 
653 |a Predictive control 
653 |a State estimation 
653 |a Manufacturing 
653 |a Dynamic models 
653 |a Digital to analog converters 
653 |a Kalman filters 
653 |a Differential pressure 
653 |a Fault diagnosis 
653 |a Industrial Internet of Things 
653 |a Man-machine interfaces 
653 |a Digital twins 
653 |a Sensors 
653 |a Process controls 
653 |a Structured singular values 
653 |a Pneumatic control 
653 |a Variables 
653 |a Separators 
653 |a Stability 
653 |a Anomalies 
653 |a Performance indices 
653 |a Real time 
653 |a HyperText Markup Language 
653 |a Software 
700 1 |a Sarfraz Mohammad  |u Department of Electrical Engineering, Zakir Husain College of Engineering and Technology (ZHCET), Aligarh Muslim University, Aligarh 202002, India; msarfraz@zhcet.ac.in 
700 1 |a Ghaleb, Atef M  |u Department of Industrial Engineering, College of Engineering &amp;amp; Advanced Computing, Alfaisal University, Riyadh 11533, Saudi Arabia; aghaleb@alfaisal.edu 
700 1 |a Dabwan Abdulmajeed  |u Industrial Engineering Department, College of Engineering, Taibah University, Al Madinah Al Munawwarah 42353, Saudi Arabia 
700 1 |a Ahmed, Adeeb A  |u Department of Control Science and Engineering, School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China 
700 1 |a Al-Shayea, Adel  |u Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia 
773 0 |t Machines  |g vol. 13, no. 10 (2025), p. 940-968 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265918948/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265918948/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265918948/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch