Study on the Passivation of Defect States in Wide-Bandgap Perovskite Solar Cells by the Dual Addition of KSCN and KCl

Guardado en:
Detalles Bibliográficos
Publicado en:Nanomaterials vol. 15, no. 20 (2025), p. 1602-1618
Autor principal: Li, Min
Otros Autores: Peng Zhaodong, Yao, Xin, Huang, Jie, Zhang, Dawei
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265927249
003 UK-CbPIL
022 |a 2079-4991 
024 7 |a 10.3390/nano15201602  |2 doi 
035 |a 3265927249 
045 2 |b d20250101  |b d20251231 
084 |a 231543  |2 nlm 
100 1 |a Li, Min  |u College of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 
245 1 |a Study on the Passivation of Defect States in Wide-Bandgap Perovskite Solar Cells by the Dual Addition of KSCN and KCl 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Wide-bandgap (WBG) perovskite solar cells (PSCs) are critical for high-efficiency tandem photovoltaic devices, but their practical application is severely limited by phase separation and poor film quality. To address these challenges, this study proposes a dual-additive passivation strategy using potassium thiocyanate (KSCN) and potassium chloride (KCl) to synergistically optimize the crystallinity and defect state of WBG perovskite films. The selection of KSCN/KCl is based on their complementary functionalities: K+ ions occupy lattice vacancies to suppress ion migration, Cl− ions promote oriented crystal growth, and SCN− ions passivate surface defects via Lewis acid-base interactions. A series of KSCN/KCl concentrations (relative to Pb) were tested, and the effects of dual additives on film properties and device performance were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), space-charge-limited current (SCLC), current-voltage (J-V), and external quantum efficiency (EQE) measurements. Results show that the dual additives significantly enhance film crystallinity (average grain size increased by 27.0% vs. control), reduce surface roughness (from 86.50 nm to 24.06 nm), and passivate defects-suppressing non-radiative recombination and increasing electrical conductivity. For WBG PSCs, the champion device with KSCN (0.5 mol%) + KCl (1 mol%) exhibits a power conversion efficiency (PCE) of 16.85%, representing a 19.4% improvement over the control (14.11%), along with enhanced open-circuit voltage (Voc: +2.8%), short-circuit current density (Jsc: +6.7%), and fill factor (FF: +8.9%). Maximum power point (MPP) tracking confirms superior operational stability under illumination. This dual-inorganic-additive strategy provides a generalizable approach for the rational design of stable, high-efficiency WBG perovskite films. 
653 |a Silicon 
653 |a Additives 
653 |a Scanning electron microscopy 
653 |a Defects 
653 |a Lattice vacancies 
653 |a Ion migration 
653 |a Ions 
653 |a Solar cells 
653 |a Crystallinity 
653 |a X-ray diffraction 
653 |a Crystal growth 
653 |a Electrical resistivity 
653 |a Grain size 
653 |a Potassium 
653 |a Quantum efficiency 
653 |a Surface defects 
653 |a Thiocyanates 
653 |a Photoelectrons 
653 |a Photovoltaic cells 
653 |a Radiative recombination 
653 |a Efficiency 
653 |a Perovskites 
653 |a Voltage 
653 |a Crystal lattices 
653 |a Photons 
653 |a Chloride 
653 |a Passivity 
653 |a Photovoltaics 
653 |a Costs 
653 |a Lewis acid 
653 |a Energy gap 
653 |a Energy conversion efficiency 
653 |a Crystal defects 
653 |a Surface roughness 
653 |a Phase separation 
653 |a Open circuit voltage 
653 |a Electrical conductivity 
653 |a Potassium chloride 
653 |a Short-circuit current 
653 |a Photoelectron spectroscopy 
653 |a Photoluminescence 
700 1 |a Peng Zhaodong  |u College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China 
700 1 |a Yao, Xin  |u College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China 
700 1 |a Huang, Jie  |u College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China 
700 1 |a Zhang, Dawei  |u College of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 
773 0 |t Nanomaterials  |g vol. 15, no. 20 (2025), p. 1602-1618 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265927249/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265927249/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265927249/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch