Ligusticum chuanxiong Hort. Targets hsa-miR-10a-5p to Potentially Induce Apoptosis and Modulate Lipid Metabolism in Glioblastoma: A Natural-Product-Based Therapeutic Strategy
Guardado en:
| Publicado en: | Pharmaceuticals vol. 18, no. 10 (2025), p. 1553-1579 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , , , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Background/Objectives: Glioblastoma (GBM), the most aggressive primary malignant brain tumor, has a dismal prognosis and limited treatment options. The dried rhizome of Ligusticum chuanxiong Hort. (Chuanxiong, CX) is a traditional Chinese medicinal herb frequently prescribed in formulas intended to invigorate blood circulation. CX also exhibits anti-glioma activity, but its molecular mechanisms remain incompletely understood. Methods: In this study, we combined transcriptomics and Raman spectroscopy to investigate the effects of reconstituted CX-dispensing granules (hereafter referred to as CXG solution) on U87MG cells, suggesting their dual role in promoting cell death and modulating collagen deposition and lipid metabolism. Results: Mechanistically, we demonstrated that the CXG solution downregulates hsa-miR-10a-5p, which directly targets BCL2L11, known to induce pro-apoptotic effects, as validated by qPCR and dual-luciferase reporter assays. Furthermore, the CXG solution and hsa-miR-10a-5p suppress lipid metabolism through a coherent feed-forward loop via targeting transcription factors SREBF1 and E2F1. An electrophoretic mobility shift assay (EMSA) confirmed E2F1 binds to the hsa-miR-29a promoter, leading to the synergistic repression of hsa-miR-29a-3p by SREBF1 and E2F1. Network pharmacology analysis combined with molecular docking suggested that the ferulic acid and adenosine in CX potentially modulate EGFR-the E2F1-hsa-miR-10a-5p axis. Conclusions: These findings elucidate CX’s multi-target anti-GBM mechanisms and propose a novel therapeutic strategy combining metabolic intervention with miRNA-targeted therapy, providing novel insights into feed-forward loop regulation in miRNA networks. |
|---|---|
| ISSN: | 1424-8247 |
| DOI: | 10.3390/ph18101553 |
| Fuente: | Research Library |