Real-Time Observer and Neuronal Identification of an Erbium-Doped Fiber Laser

Guardado en:
Detalles Bibliográficos
Publicado en:Photonics vol. 12, no. 10 (2025), p. 955-971
Autor principal: Magallón-García, Daniel Alejandro
Otros Autores: López-Mancilla Didier, Rider, Jaimes-Reátegui, García-López, Juan Hugo, Huerta-Cuellar, Guillermo, Ontañon-García, Luis Javier
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265936809
003 UK-CbPIL
022 |a 2304-6732 
024 7 |a 10.3390/photonics12100955  |2 doi 
035 |a 3265936809 
045 2 |b d20250101  |b d20251231 
084 |a 231546  |2 nlm 
100 1 |a Magallón-García, Daniel Alejandro  |u Optics, Complex Systems and Innovation Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; daniel.magallon6532@academicos.udg.mx (D.A.M.-G.); rider.jaimes@academicos.udg.mx (R.J.-R.); guillermo.huerta@academicos.udg.mx (G.H.-C.) 
245 1 |a Real-Time Observer and Neuronal Identification of an Erbium-Doped Fiber Laser 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents the implementation of a real-time nonlinear state observer applied to an erbium-doped fiber laser system. The observer is designed to estimate population inversion, a state variable that cannot be measured directly due to the physical limitations of measurement devices. Taking advantage of the fact that the laser intensity can be measured in real time, an observer was developed to reconstruct the dynamics of population inversion from this measurable variable. To validate and strengthen the estimate obtained by the observer, a Recurrent Wavelet First-Order Neural Network (RWFONN) was implemented and trained to identify both state variables: the laser intensity and the population inversion. This network efficiently captures the system’s nonlinear dynamic properties and complements the observer’s performance. Two metrics were applied to evaluate the accuracy and reliability of the results: the Euclidean distance and the mean square error (MSE), both of which confirm the consistency between the estimated and expected values. The ultimate goal of this research is to develop a neural control architecture that combines the estimation capabilities of state observers with the generalization and modeling power of artificial neural networks. This hybrid approach opens up the possibility of developing more robust and adaptive control systems for highly dynamic, complex laser systems. 
653 |a Control systems 
653 |a Mathematical models 
653 |a Measuring instruments 
653 |a Artificial neural networks 
653 |a Real time 
653 |a Erbium 
653 |a Approximation 
653 |a Adaptive control 
653 |a Dynamic characteristics 
653 |a Doped fibers 
653 |a State observers 
653 |a Robust control 
653 |a Adaptive systems 
653 |a Population inversion 
653 |a Lasers 
653 |a Neural networks 
653 |a State variable 
653 |a Variables 
653 |a Dynamical systems 
653 |a Nonlinear dynamics 
653 |a Fiber lasers 
653 |a Euclidean geometry 
700 1 |a López-Mancilla Didier  |u Control Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; didier.lopez@academicos.udg.mx 
700 1 |a Rider, Jaimes-Reátegui  |u Optics, Complex Systems and Innovation Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; daniel.magallon6532@academicos.udg.mx (D.A.M.-G.); rider.jaimes@academicos.udg.mx (R.J.-R.); guillermo.huerta@academicos.udg.mx (G.H.-C.) 
700 1 |a García-López, Juan Hugo  |u Optics, Complex Systems and Innovation Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; daniel.magallon6532@academicos.udg.mx (D.A.M.-G.); rider.jaimes@academicos.udg.mx (R.J.-R.); guillermo.huerta@academicos.udg.mx (G.H.-C.) 
700 1 |a Huerta-Cuellar, Guillermo  |u Optics, Complex Systems and Innovation Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; daniel.magallon6532@academicos.udg.mx (D.A.M.-G.); rider.jaimes@academicos.udg.mx (R.J.-R.); guillermo.huerta@academicos.udg.mx (G.H.-C.) 
700 1 |a Ontañon-García, Luis Javier  |u Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas, San Luis Potosí 78600, Mexico 
773 0 |t Photonics  |g vol. 12, no. 10 (2025), p. 955-971 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265936809/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265936809/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265936809/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch