Self-Supervised Learning and Multi-Sensor Fusion for Alpine Wetland Vegetation Mapping: Bayinbuluke, China

Uloženo v:
Podrobná bibliografie
Vydáno v:Plants vol. 14, no. 20 (2025), p. 3153-3170
Hlavní autor: Zaka Muhammad Murtaza
Další autoři: Samat Alim, Jilili, Abuduwaili, Zhu Enzhao, Arslan, Akhtar, Li, Wenbo
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3265937220
003 UK-CbPIL
022 |a 2223-7747 
024 7 |a 10.3390/plants14203153  |2 doi 
035 |a 3265937220 
045 2 |b d20250101  |b d20251231 
084 |a 231551  |2 nlm 
100 1 |a Zaka Muhammad Murtaza  |u State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 
245 1 |a Self-Supervised Learning and Multi-Sensor Fusion for Alpine Wetland Vegetation Mapping: Bayinbuluke, China 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate mapping of wetland vegetation is essential for ecological monitoring and conservation, yet it remains challenging due to the spatial heterogeneity of wetlands, the scarcity of ground-truth data, and the spread of invasive species. Invasive plants alter native vegetation patterns, making their early detection critical for preserving ecosystem integrity. This study proposes a novel framework that integrates self-supervised learning (SSL), supervised segmentation, and multi-sensor data fusion to enhance vegetation classification in the Bayinbuluke Alpine Wetland, China. High-resolution satellite imagery from PlanetScope-3 and Jilin-1 was fused, and SSL methods—including BYOL, DINO, and MoCo v3—were employed to learn transferable feature representations without extensive labeled data. The results show that SSL methods exhibit consistent variations in classification performance, while multi-sensor fusion significantly improves the detection of rare and fragmented vegetation patches and enables the early identification of invasive species. Overall, the proposed SSL–fusion strategy reduces reliance on labor-intensive field data collection and provides a scalable, high-precision solution for wetland monitoring and invasive species management. 
653 |a Accuracy 
653 |a Invasive species 
653 |a Datasets 
653 |a Classification 
653 |a Image resolution 
653 |a Ecological monitoring 
653 |a Flowers & plants 
653 |a Indigenous species 
653 |a Wetlands 
653 |a Satellite imagery 
653 |a Biodiversity 
653 |a Ecosystem integrity 
653 |a Data integration 
653 |a Plants (botany) 
653 |a Vegetation mapping 
653 |a Vegetation surveys 
653 |a Data collection 
653 |a Vegetation patterns 
653 |a Heterogeneity 
653 |a Self-supervised learning 
653 |a Remote sensing 
653 |a Invasive plants 
653 |a Ground truth 
653 |a Sensors 
653 |a Spatial heterogeneity 
653 |a Introduced species 
653 |a Mapping 
653 |a Annotations 
653 |a Multisensor fusion 
653 |a Semantics 
700 1 |a Samat Alim  |u State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 
700 1 |a Jilili, Abuduwaili  |u State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 
700 1 |a Zhu Enzhao  |u State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 
700 1 |a Arslan, Akhtar  |u University of Chinese Academy of Sciences, Beijing 100049, China 
700 1 |a Li, Wenbo  |u Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy 
773 0 |t Plants  |g vol. 14, no. 20 (2025), p. 3153-3170 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265937220/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265937220/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265937220/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch