A High-Resolution Sea Ice Concentration Retrieval from Ice-WaterNet Using Sentinel-1 SAR Imagery in Fram Strait, Arctic

Guardado en:
Bibliografiske detaljer
Udgivet i:Remote Sensing vol. 17, no. 20 (2025), p. 3475-3496
Hovedforfatter: Zhu, Tingting
Andre forfattere: Cui Xiangbin, Zhang, Yu
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3265942151
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17203475  |2 doi 
035 |a 3265942151 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Zhu, Tingting  |u College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 210037, China 
245 1 |a A High-Resolution Sea Ice Concentration Retrieval from Ice-WaterNet Using Sentinel-1 SAR Imagery in Fram Strait, Arctic 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> We propose Ice-WaterNet, a novel superpixel-based deep learning framework that effectively reduces classification uncertainty in complex melt season conditions by integrating CRF and a dual-attention U-Net mechanism. </list-item> <list-item> The model is validated on 2735 Sentinel-1 SAR images from 2021–2023 in the Fram Strait, demonstrating superior performance over state-of-the-art methods in both winter and summer seasons across multiple evaluation metrics. </list-item> What is the implication of the main finding? <list list-type="bullet"> <list-item> This study indicates the critical need to develop high-resolution SAR-based products, which can more accurately capture fine-grained spatiotemporal melt characteristics and provide reliable data for climate change research and sea ice trend analysis. </list-item> <list-item> By revealing the limitations of passive microwave sensors in assessing melt conditions, this study emphasizes that high-resolution SIC retrieval is essential to reduce underestimation errors and support operational applications such as maritime navigation and polar environment monitoring with improved spatial and temporal precision. </list-item> High spatial resolution sea ice concentration (SIC) is crucial for global climate and marine activity. However, retrieving high spatial resolution SIC from passive microwave sensors is challenging due to the trade-off between spatial resolution and atmospheric contamination. Our study develops the Ice-WaterNet framework, a novel superpixel-based deep learning model that integrates Conditional Random Fields (CRF) with a dual-attention U-Net to enhance ice–water classification in Synthetic Aperture Radar (SAR) imagery. The Ice-WaterNet model has been extensively tested on 2735 Sentinel-1 dual-polarized SAR images from 2021 to 2023, covering both winter and summer seasons in the Fram Strait. To tackle the complex surface features during the melt season, wind-roughened open water, and varying ice floe sizes, a superpixel strategy is employed to efficiently reduce classification uncertainty. Uncertain superpixels identified by CRF are iteratively refined using the U-Net attention mechanism. Experimental results demonstrate that Ice-WaterNet achieves significant improvements in classification accuracy, outperforming CRF and U-Net by 3.375% in Intersection over Union (IoU) and 3.09% in F1-score during the melt season, and by 1.96 in IoU and 1.75 in F1-score during the freeze season. The derived high-resolution SIC products, updated every two days, were evaluated against Met Norway ice charts and compared with ASI from AMSR-2 and SSM/I, showing a substantial reduction in misclassification in marginal ice zones, particularly under melting conditions. These findings underscore the potential of Ice-WaterNet in supporting precise sea ice monitoring and climate change research. 
651 4 |a Fram Strait 
651 4 |a Arctic region 
653 |a Environmental monitoring 
653 |a Ambiguity 
653 |a Classification 
653 |a Summer 
653 |a Trend analysis 
653 |a Conditional random fields 
653 |a Spatiotemporal data 
653 |a Polar environments 
653 |a Water 
653 |a Air pollution 
653 |a Uncertainty 
653 |a Ice 
653 |a Climate change 
653 |a Remote sensing 
653 |a Climatic data 
653 |a Synthetic aperture radar 
653 |a High resolution 
653 |a Straits 
653 |a Retrieval 
653 |a Sea ice 
653 |a Winter 
653 |a Climate change research 
653 |a Error reduction 
653 |a Algorithms 
653 |a Semantics 
653 |a Parameter estimation 
653 |a Deep learning 
653 |a Sensors 
653 |a Spatial discrimination 
653 |a Radar imaging 
653 |a Monitoring 
653 |a Seasons 
653 |a Machine learning 
653 |a Global climate 
653 |a Microwave sensors 
653 |a Spatial resolution 
653 |a Neural networks 
700 1 |a Cui Xiangbin  |u Polar Research Institute of China, Shanghai 200136, China; cuixiangbin@pric.org.cn 
700 1 |a Zhang, Yu  |u Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China 
773 0 |t Remote Sensing  |g vol. 17, no. 20 (2025), p. 3475-3496 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265942151/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265942151/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265942151/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch