Semantic Segmentation of High-Resolution Remote Sensing Images Based on RS3Mamba: An Investigation of the Extraction Algorithm for Rural Compound Utilization Status

Salvato in:
Dettagli Bibliografici
Pubblicato in:Remote Sensing vol. 17, no. 20 (2025), p. 3443-3465
Autore principale: Fang Xinyu
Altri autori: Liu, Zhenbo, Xie Su’an, Ge Yunjian
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3265943091
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17203443  |2 doi 
035 |a 3265943091 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Fang Xinyu  |u School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 202283350014@nuist.edu.cn (X.F.); 202213350060@nuist.edu.cn (S.X.) 
245 1 |a Semantic Segmentation of High-Resolution Remote Sensing Images Based on RS<sup>3</sup>Mamba: An Investigation of the Extraction Algorithm for Rural Compound Utilization Status 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> It is confirmed that high-spatial-resolution remote sensing images can achieve high-precision estimation of rural homestead utilization rate and calculation of vacancy rate via semantic segmentation methods. </list-item> <list-item> A high-precision extraction algorithm framework suitable for rural homesteads in regularly shaped areas is proposed. </list-item> What is the implication of the main finding? <list list-type="bullet"> <list-item> It provides a feasible technical approach for the rapid and accurate acquisition of rural homestead spatial information, breaking through the limitation of low efficiency in traditional manual surveys. </list-item> <list-item> The proposed algorithm framework can offer key technical support and data references for rural planning, homestead management, and optimal allocation of land resources. </list-item> In this study, we utilize Gaofen-2 satellite remote sensing images to optimize and enhance the extraction of feature information from rural compounds, addressing key challenges in high-resolution remote sensing analysis: traditional methods struggle to effectively capture long-distance spatial dependencies for scattered rural compounds. To this end, we implement the RS3Mamba+ deep learning model, which introduces the Mamba state space model (SSM) into its auxiliary branching—leveraging Mamba’s sequence modeling advantage to efficiently capture long-range spatial correlations of rural compounds, a critical capability for analyzing sparse rural buildings. This Mamba-assisted branch, combined with multi-directional selective scanning (SS2D) and the enhanced STEM network framework (replacing single 7 × 7 convolution with two-stage 3 × 3 convolutions to reduce information loss), works synergistically with a ResNet-based main branch for local feature extraction. We further introduce a multiscale attention feature fusion mechanism that optimizes feature extraction and fusion, enhances edge contour extraction accuracy in courtyards, and improves the recognition and differentiation of courtyards from regions with complex textures. The feature information of courtyard utilization status is finally extracted using empirical methods. A typical rural area in Weifang City, Shandong Province, is selected as the experimental sample area. Results show that the extraction accuracy reaches an average intersection over union (mIoU) of 79.64% and a Kappa coefficient of 0.7889, improving the F1 score by at least 8.12% and mIoU by 4.83% compared with models such as DeepLabv3+ and Transformer. The algorithm’s efficacy in mitigating false alarms triggered by shadows and intricate textures is particularly salient, underscoring its potential as a potent instrument for the extraction of rural vacancy rates. 
651 4 |a Shandong China 
651 4 |a China 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Texture recognition 
653 |a Deep learning 
653 |a Image resolution 
653 |a Algorithms 
653 |a Satellite imagery 
653 |a Spatial dependencies 
653 |a State space models 
653 |a Rural areas 
653 |a Remote sensing 
653 |a Data processing 
653 |a Unmanned aerial vehicles 
653 |a Image processing 
653 |a Semantic segmentation 
653 |a Machine learning 
653 |a Spatial data 
653 |a Image segmentation 
653 |a False alarms 
653 |a Courtyards 
653 |a Neural networks 
653 |a Optimization 
653 |a High resolution 
653 |a Classification 
653 |a Information processing 
653 |a Utilization 
653 |a Land resources 
653 |a Semantics 
653 |a Towns 
700 1 |a Liu, Zhenbo  |u School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 202283350014@nuist.edu.cn (X.F.); 202213350060@nuist.edu.cn (S.X.) 
700 1 |a Xie Su’an  |u School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 202283350014@nuist.edu.cn (X.F.); 202213350060@nuist.edu.cn (S.X.) 
700 1 |a Ge Yunjian  |u School of Geography, Nanjing University of Information Science and Technology, Nanjing 210044, China; 002049@nuist.edu.cn 
773 0 |t Remote Sensing  |g vol. 17, no. 20 (2025), p. 3443-3465 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265943091/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265943091/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265943091/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch