MSIMG: A Density-Aware Multi-Channel Image Representation Method for Mass Spectrometry

Shranjeno v:
Bibliografske podrobnosti
izdano v:Sensors vol. 25, no. 20 (2025), p. 6363-6381
Glavni avtor: Zhang Fengyi
Drugi avtorji: Gao Boyong, Wang Yinchu, Guo, Lin, Zhang, Wei, Xiong Xingchuang
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3265945576
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25206363  |2 doi 
035 |a 3265945576 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Zhang Fengyi  |u College of Information Engineering, China Jiliang University, Hangzhou 310018, China; fengyi.zhang@cjlu.edu.cn (F.Z.); 
245 1 |a MSIMG: A Density-Aware Multi-Channel Image Representation Method for Mass Spectrometry 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Extracting key features for phenotype classification from high-dimensional and complex mass spectrometry (MS) data presents a significant challenge. Conventional data representation methods, such as traditional peak lists or grid-based imaging strategies, are often hampered by information loss and compromised signal integrity, thereby limiting the performance of downstream deep learning models. To address this issue, we propose a novel data representation framework named MSIMG. Inspired by object detection in computer vision, MSIMG introduces a data-driven, “density-peak-centric” patch selection strategy. This strategy employs density map estimation and non-maximum suppression algorithms to locate the centers of signal-dense regions, which serve as anchors for dynamic, content-aware patch extraction. This process transforms raw mass spectrometry data into a multi-channel image representation with higher information fidelity. Extensive experiments conducted on two public clinical mass spectrometry datasets demonstrate that MSIMG significantly outperforms both the traditional peak list method and the grid-based MetImage approach. This study confirms that the MSIMG framework, through its content-aware patch selection, provides a more information-dense and discriminative data representation paradigm for deep learning models. Our findings highlight the decisive impact of data representation on model performance and successfully demonstrate the immense potential of applying computer vision strategies to analytical chemistry data, paving the way for the development of more robust and precise clinical diagnostic models. 
653 |a Mass spectrometry 
653 |a Feature selection 
653 |a Data analysis 
653 |a Retention 
653 |a Scientific imaging 
653 |a Deep learning 
653 |a Algorithms 
653 |a Computer vision 
653 |a Data compression 
653 |a Proteomics 
700 1 |a Gao Boyong  |u College of Information Engineering, China Jiliang University, Hangzhou 310018, China; fengyi.zhang@cjlu.edu.cn (F.Z.); 
700 1 |a Wang Yinchu  |u National Institute of Metrology, Beijing 100029, China 
700 1 |a Guo, Lin  |u National Institute of Metrology, Beijing 100029, China 
700 1 |a Zhang, Wei  |u National Institute of Metrology, Beijing 100029, China 
700 1 |a Xiong Xingchuang  |u National Institute of Metrology, Beijing 100029, China 
773 0 |t Sensors  |g vol. 25, no. 20 (2025), p. 6363-6381 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265945576/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265945576/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265945576/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch