Design and Implementation of a YOLOv2 Accelerator on a Zynq-7000 FPGA

Guardado en:
Detalles Bibliográficos
Publicado en:Sensors vol. 25, no. 20 (2025), p. 6359-6382
Autor principal: Kim, Huimin
Otros Autores: Kim Tae-Kyoung
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:You Only Look Once (YOLO) is a convolutional neural network-based object detection algorithm widely used in real-time vision applications. However, its high computational demand leads to significant power consumption and cost when deployed in graphics processing units. Field-programmable gate arrays offer a low-power alternative. However, their efficient implementation requires architecture-level optimization tailored to limited device resources. This study presents an optimized YOLOv2 accelerator for the Zynq-7000 system-on-chip (SoC). The design employs 16-bit integer quantization, a filter reuse structure, an input feature map reuse scheme using a line buffer, and tiling parameter optimization for the convolution and max pooling layers to maximize resource efficiency. In addition, a stall-based control mechanism is introduced to prevent structural hazards in the pipeline. The proposed accelerator was implemented on the Zynq-7000 SoC board, and a system-level evaluation confirmed a negligible accuracy drop of only 0.2% compared with the 32-bit floating-point baseline. Compared with previous YOLO accelerators on the same SoC, the design achieved up to 26% and 15% reductions in flip-flop and digital signal processor usage, respectively. This result demonstrates feasible deployment on XC7Z020 with DSP 57.27% and FF 16.55% utilization.
ISSN:1424-8220
DOI:10.3390/s25206359
Fuente:Health & Medical Collection