Statistical Learning-Assisted Evolutionary Algorithm for Digital Twin-Driven Job Shop Scheduling with Discrete Operation Sequence Flexibility

Guardat en:
Dades bibliogràfiques
Publicat a:Symmetry vol. 17, no. 10 (2025), p. 1614-1634
Autor principal: Jia, Yan
Altres autors: Cheng Weiyao, Meng Leilei, Zhang Chaoyong
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3265951947
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17101614  |2 doi 
035 |a 3265951947 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Jia, Yan  |u School of Management, Xihua University, Chengdu 610039, China 
245 1 |a Statistical Learning-Assisted Evolutionary Algorithm for Digital Twin-Driven Job Shop Scheduling with Discrete Operation Sequence Flexibility 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the rapid development of Industry 5.0, smart manufacturing has become a key focus in production systems. Hence, achieving efficient planning and scheduling on the shop floor is important, especially in job shop environments, which are widely encountered in manufacturing. However, traditional job shop scheduling problems (JSP) assume fixed operation sequences, whereas in modern production, some operations exhibit sequence flexibility, referred to as sequence-free operations. To mitigate this gap, this paper studies the JSP with discrete operation sequence flexibility (JSPDS), aiming to minimize the makespan. To effectively solve the JSPDS, a mixed-integer linear programming model is formulated to solve small-scale instances, verifying multiple optimal solutions. To enhance solution quality for larger instances, a digital twin (DT)–enhanced initialization method is proposed, which captures expert knowledge from a high-fidelity virtual workshop to generate high-quality initial population. In addition, a statistical learning-assisted local search method is developed, employing six tailored search operators and Thompson sampling to adaptively select promising operators during the evolutionary algorithm (EA) process. Extensive experiments demonstrate that the proposed DT-statistical learning EA (DT-SLEA) significantly improves scheduling performance compared with state-of-the-art algorithms, highlighting the effectiveness of integrating digital twin and statistical learning techniques for shop scheduling problems. Specifically, in the Wilcoxon test, pairwise comparisons with the other algorithms show that DT-SLEA has p-values below 0.05. Meanwhile, the proposed framework provides guidance on utilizing symmetry to improve optimization in complex manufacturing systems. 
653 |a Linear programming 
653 |a Collaboration 
653 |a Integer programming 
653 |a Workshops 
653 |a Optimization 
653 |a Job shops 
653 |a Manufacturing 
653 |a Machine learning 
653 |a Energy consumption 
653 |a Evolutionary algorithms 
653 |a Preventive maintenance 
653 |a Factories 
653 |a Scheduling 
653 |a Search methods 
653 |a Digital twins 
653 |a Genetic algorithms 
653 |a Knowledge 
653 |a Decision making 
653 |a Flexibility 
653 |a Operators 
653 |a Mixed integer 
653 |a Industry 4.0 
653 |a Industry 5.0 
653 |a HyperText Markup Language 
653 |a Job shop scheduling 
700 1 |a Cheng Weiyao  |u School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; weiyao_cheng@163.com (W.C.); zcyhust@hust.edu.cn (C.Z.) 
700 1 |a Meng Leilei  |u School of Computer Science, Liaocheng University, Liaocheng 252000, China; mengleilei@lcu-cs.com 
700 1 |a Zhang Chaoyong  |u School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; weiyao_cheng@163.com (W.C.); zcyhust@hust.edu.cn (C.Z.) 
773 0 |t Symmetry  |g vol. 17, no. 10 (2025), p. 1614-1634 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265951947/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265951947/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265951947/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch