Evaluating Generative AI for HTML Development
Guardado en:
| Publicado en: | Technologies vol. 13, no. 10 (2025), p. 445-465 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3265952725 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2227-7080 | ||
| 024 | 7 | |a 10.3390/technologies13100445 |2 doi | |
| 035 | |a 3265952725 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231637 |2 nlm | ||
| 100 | 1 | |a Alahmad, Ahmad Salah |u Accounting and MIS Department, Gulf University for Science and Technology, Mishref 32093, Kuwait | |
| 245 | 1 | |a Evaluating Generative AI for HTML Development | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a The adoption of generative Artificial Intelligence (AI) tools in web development implementation tasks is increasing exponentially. This paper evaluates the performance of five leading Generative AI models: ChatGPT-4.0, DeepSeek-V3, Gemini-1.5, Copilot (March 2025 release), and Claude-3, in building HTML components. This study presents a structured evaluation of AI-generated HTML code produced by leading Generative AI models. We have designed a set of prompts for popular tasks to generate five standardized HTML components: a contact form, a navigation menu, a blog post layout, a product listing page, and a dashboard interface. The responses were evaluated across five dimensions: semantic structure, accessibility, efficiency, readability, and search engine optimization (SEO). Results show that while AI-generated HTML can achieve high validation scores, deficiencies remain in semantic structuring and accessibility, with measurable differences between models. The results show variation in the quality and structure of the generated HTML. These results provide practical insights into the limitations and strengths of the current use of AI tools in HTML development. | |
| 610 | 4 | |a Hangzhou DeepSeek Artificial Intelligence Co Ltd | |
| 653 | |a Standards | ||
| 653 | |a Software quality | ||
| 653 | |a Accessibility | ||
| 653 | |a Programming languages | ||
| 653 | |a Accuracy | ||
| 653 | |a Semantics | ||
| 653 | |a Usability | ||
| 653 | |a Software development | ||
| 653 | |a Performance evaluation | ||
| 653 | |a Chatbots | ||
| 653 | |a Search engine optimization | ||
| 653 | |a Generative artificial intelligence | ||
| 653 | |a Compliance | ||
| 653 | |a Search engines | ||
| 653 | |a Large language models | ||
| 653 | |a HyperText Markup Language | ||
| 653 | |a Bias | ||
| 700 | 1 | |a Hasan, Kahtan |u Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK; hkahtan@cardiffmet.ac.uk | |
| 773 | 0 | |t Technologies |g vol. 13, no. 10 (2025), p. 445-465 | |
| 786 | 0 | |d ProQuest |t Materials Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3265952725/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3265952725/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3265952725/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |