Evaluating Generative AI for HTML Development

Guardado en:
Detalles Bibliográficos
Publicado en:Technologies vol. 13, no. 10 (2025), p. 445-465
Autor principal: Alahmad, Ahmad Salah
Otros Autores: Hasan, Kahtan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265952725
003 UK-CbPIL
022 |a 2227-7080 
024 7 |a 10.3390/technologies13100445  |2 doi 
035 |a 3265952725 
045 2 |b d20250101  |b d20251231 
084 |a 231637  |2 nlm 
100 1 |a Alahmad, Ahmad Salah  |u Accounting and MIS Department, Gulf University for Science and Technology, Mishref 32093, Kuwait 
245 1 |a Evaluating Generative AI for HTML Development 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The adoption of generative Artificial Intelligence (AI) tools in web development implementation tasks is increasing exponentially. This paper evaluates the performance of five leading Generative AI models: ChatGPT-4.0, DeepSeek-V3, Gemini-1.5, Copilot (March 2025 release), and Claude-3, in building HTML components. This study presents a structured evaluation of AI-generated HTML code produced by leading Generative AI models. We have designed a set of prompts for popular tasks to generate five standardized HTML components: a contact form, a navigation menu, a blog post layout, a product listing page, and a dashboard interface. The responses were evaluated across five dimensions: semantic structure, accessibility, efficiency, readability, and search engine optimization (SEO). Results show that while AI-generated HTML can achieve high validation scores, deficiencies remain in semantic structuring and accessibility, with measurable differences between models. The results show variation in the quality and structure of the generated HTML. These results provide practical insights into the limitations and strengths of the current use of AI tools in HTML development. 
610 4 |a Hangzhou DeepSeek Artificial Intelligence Co Ltd 
653 |a Standards 
653 |a Software quality 
653 |a Accessibility 
653 |a Programming languages 
653 |a Accuracy 
653 |a Semantics 
653 |a Usability 
653 |a Software development 
653 |a Performance evaluation 
653 |a Chatbots 
653 |a Search engine optimization 
653 |a Generative artificial intelligence 
653 |a Compliance 
653 |a Search engines 
653 |a Large language models 
653 |a HyperText Markup Language 
653 |a Bias 
700 1 |a Hasan, Kahtan  |u Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK; hkahtan@cardiffmet.ac.uk 
773 0 |t Technologies  |g vol. 13, no. 10 (2025), p. 445-465 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265952725/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265952725/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265952725/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch