From machine learning to citizen science: methods for estimating pest disease prevalence

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:EFSA Journal vol. 22, no. 10 (Oct 1, 2025)
Հիմնական հեղինակ: Moustakas, Aristides
Հրապարակվել է:
John Wiley & Sons, Inc.
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3266181533
003 UK-CbPIL
022 |a 1831-4732 
024 7 |a 10.2903/sp.efsa.2025.EN-9187  |2 doi 
035 |a 3266181533 
045 0 |b d20251001 
100 1 |a Moustakas, Aristides  |u University of Crete, Natural History Museum of Crete, Heraklion, Crete, Greece 
245 1 |a From machine learning to citizen science: methods for estimating pest disease prevalence 
260 |b John Wiley & Sons, Inc.  |c Oct 1, 2025 
513 |a Journal Article 
520 3 |a EFSA is requested to provide guidelines for estimation of pest prevalence surveys. In line with these guidelines this study performs a literature review, data extraction and general research to investigate the prevalence (monitoring) survey methods and tools that might already be available in the literature and other sources. Pest disease surveillance is required for informed assessment and management. Quantifying disease prevalence is a key factor for the disease impacts on ecosystems, one health, and food security. Surveys involve systematic or opportunistic sampling of a sub‐set of the target population in space and time. With the rapid development of smart sensors, high accuracy images, digital maps, land cover as well as climatic data, environmental data are more ubiquitous than ever before. In the light of more data novel statistical methods are developed or traditional statistical methods can be calibrated and used differently, advancing their scope. This work summarizes recent developments of quantitative methods for estimating invasive alien species and pest disease prevalence. The study includes statistical and computational methods, elements of experimental design, linear and non‐linear methods, machine learning, non‐invasive sampling, capture recapture, remote sensing via satellite or unmanned aerial vehicles (drones), and citizen science. In addition, plant image databases of pests, diseases, and invasive species are listed. Mobile phone or web applications and their potential use for disease detection are presented. Computational software tools and libraries are listed. Interdisciplinary combinations between the methods are also discussed. Such approaches may offer novel insights, rapid assessment, and cost‐efficient surveillance prevalence estimates. These should be seen as complementary to current field survey methods for enhancing surveillance and estimating prevalence. 
653 |a Statistics 
653 |a Digital mapping 
653 |a Invasive species 
653 |a Surveillance 
653 |a Guidelines 
653 |a Assessments 
653 |a Applications programs 
653 |a Experimental design 
653 |a Disease 
653 |a Introduced species 
653 |a Medical imaging 
653 |a Remote sensing 
653 |a Capture-recapture studies 
653 |a Machine learning 
653 |a Computer applications 
653 |a Sampling 
653 |a Statistical methods 
653 |a Disease detection 
653 |a Land cover 
653 |a Smart sensors 
653 |a Learning algorithms 
653 |a Food security 
653 |a Literature reviews 
653 |a Climatic data 
653 |a Pests 
653 |a Unmanned aerial vehicles 
653 |a Environmental impact 
653 |a Design of experiments 
653 |a Surveys 
653 |a Drone aircraft 
653 |a Software 
653 |a Estimation 
653 |a Polls & surveys 
653 |a Environmental 
773 0 |t EFSA Journal  |g vol. 22, no. 10 (Oct 1, 2025) 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3266181533/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3266181533/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch