Analyzing the influence of chemical components of incinerated bottom ash on compressive strength of magnesium phosphate cement using machine learning analysis
Guardado en:
| Publicado en: | Geoenvironmental Disasters vol. 12, no. 1 (Dec 2025), p. 35 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , |
| Publicado: |
Springer Nature B.V.
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | BackgroundThe use of incinerated bottom ash (IBA) as a sustainable construction material offers potential environmental benefits but introduces complex interactions with cement chemistry. Magnesium phosphate cement (MPC), known for its rapid hardening and superior bonding, can be optimized through the controlled incorporation of IBA. However, limited studies have addressed how the chemical components of IBA affect the compressive strength of MPC, particularly using data-driven approaches.MethodsA database of 396 experimental samples was compiled from previous studies considering mix proportions, oxide compositions, and curing conditions. Four ensemble machine learning algorithms—Extreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), Gradient Boosting Regressor (GBR), and Random Forest (RFR)—were employed to predict compressive strength. Model robustness was validated through 5-fold cross-validation. Feature interpretation was achieved using SHapley Additive exPlanations (SHAP) and Partial Dependence Plots (PDP) to quantify individual and interactive effects of chemical and physical parameters.ResultsThe XGB model achieved the highest predictive accuracy, with mean training and testing R2 values greater than 0.90 and 0.80, and the lowest mean absolute percentage error of 16.71%. SHAP analysis identified curing age as the most dominant factor, followed by FA/C, W/C, and MgO/PO4 ratios. IBA content and specific oxides such as Fe2O3 and Al2O3 contributed positively to strength within optimal ranges. PDP confirmed nonlinear dependencies, indicating a 26% reduction in strength as W/C increased from 0.1 to 0.6, while extended curing up to 28 days improved performance substantially.ConclusionThe integration of SHAP and PDP provided a transparent interpretation of feature interactions in IBA-modified MPC. The developed XGB model demonstrated strong generalization and interpretability. The combined modeling approach offers a reliable predictive framework for optimizing IBA incorporation in sustainable binder systems and advancing eco-efficient material design. |
|---|---|
| ISSN: | 2197-8670 |
| DOI: | 10.1186/s40677-025-00341-9 |
| Fuente: | Engineering Database |