Enhancing Machine Understanding of Qur’anic Verses: Developing Models for Translation, Semantic Textual Similarity and Metaphor Detection

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:PQDT - Global (2025)
Egile nagusia: Alnaeem, Abdulrahman S.
Argitaratua:
ProQuest Dissertations & Theses
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3266298238
003 UK-CbPIL
020 |a 9798297942141 
035 |a 3266298238 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Alnaeem, Abdulrahman S. 
245 1 |a Enhancing Machine Understanding of Qur’anic Verses: Developing Models for Translation, Semantic Textual Similarity and Metaphor Detection 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The translation of Qur’anic verses poses significant linguistic challenges due to the complexity of Arabic morphology, syntax, and semantics. Additionally, metaphors and stylistic expressions within the Qur’an present further obstacles to accurate translations. This thesis addresses these challenges by developing and evaluating three models tailored for Qur’anic studies: a Text-to-Text Transfer Transformer (T5) translation model, a semantic textual similarity (STS) model, and a metaphor detection model. The T5 model is built from scratch to translate English Qur’anic verses to Arabic and incorporates a custom Arabic tokenizer and a cleaned dataset of English-Arabic verse pairs. The STS model is employed to measure the semantic alignment between translated verses and their original texts. Finally, the metaphor detection model aims to identify metaphors within the Arabic Qur’anic text to enhance the understanding of figurative language in translations. The research contributions include a detailed comparison of the proposed models against existing baselines and an error analysis of their performance. The results demonstrate that the T5 model achieves a high degree of accuracy in translating complex Qur’anic verses, with notable success in preserving metaphors and nuanced meanings. The metaphor detection model further highlights the unique stylistic elements of the Qur’an while aiding in semantic interpretation. This work contributes to the fields of machine translation, computational linguistics, and Qur’anic studies by providing novel approaches to handling the linguistic intricacies of Qur’anic text. Future research directions can expand the dataset, improve metaphor detection techniques, and apply these models to other religious and classical texts. 
653 |a Arabic language 
653 |a Natural language processing 
653 |a Theology 
653 |a Linguistics 
653 |a Metaphor 
653 |a Classical literature 
653 |a Islamic studies 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3266298238/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3266298238/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch