A Joint Online Estimation Method for Aircraft Aerodynamic Parameters and Thrust Deviation

Salvato in:
Dettagli Bibliografici
Pubblicato in:International Journal of Aerospace Engineering vol. 2025, no. 1 (2025)
Autore principale: Ding, Di
Altri autori: Wang, Qing, Liu, Jin, Luo, Wei, Wang, An
Pubblicazione:
John Wiley & Sons, Inc.
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3266669981
003 UK-CbPIL
022 |a 1687-5966 
022 |a 1687-5974 
024 7 |a 10.1155/ijae/1890214  |2 doi 
035 |a 3266669981 
045 2 |b d20250101  |b d20251231 
084 |a 130325  |2 nlm 
100 1 |a Ding, Di  |u State Key Laboratory of Aerodynamics, , China Aerodynamics Research and Development Center, , Mianyang, , Sichuan, , China, <url href="http://cardc.cn">cardc.cn</url> 
245 1 |a A Joint Online Estimation Method for Aircraft Aerodynamic Parameters and Thrust Deviation 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a Direct measurement of engine thrust during aircraft flight remains challenging. Currently, engineering methods yield only coarse approximations of thrust during flight. This limitation significantly impedes aerodynamic parameter identification from powered flight data, particularly undermining the credibility and accuracy of the identification results of aerodynamic force coefficients. To address these challenges inherent in aerodynamic parameter identification from powered flight data, this study proposes a novel joint online estimation method capable of simultaneously estimating system states, unknown aerodynamic parameters, and engine thrust. The algorithm integrates Kalman filters with computationally efficient recursive least squares (RLS) estimators to perform sequential estimation of flight data. This structure provides real‐time access to unmeasurable engine thrust and enhancement of the estimation precision of aerodynamic parameters. The effectiveness of the proposed algorithm was rigorously validated and assessed using both simulation and flight test data from the CAE‐AVM benchmark aircraft model. The method successfully generated valid estimates of engine thrust and aerodynamic parameters from both datasets and exhibited superiority over the EKF and MMAE algorithms. Specifically, for flight test phases including climb, cruise, and descent, the maximum root mean square relative error (RMSE) for thrust estimates was found to be only 17.36%. These results demonstrate the high estimation accuracy of the proposed joint estimation method for both simulation and flight test data and validate its high effectiveness for the identification and processing of aircraft‐powered flight data. 
610 4 |a National Aeronautics & Space Administration--NASA 
653 |a Accuracy 
653 |a Random variables 
653 |a Aerodynamic forces 
653 |a Parameter identification 
653 |a Thrust 
653 |a Real time 
653 |a Signal processing 
653 |a Aviation 
653 |a Numerical analysis 
653 |a Noise 
653 |a Kalman filters 
653 |a Aircraft 
653 |a Aircraft models 
653 |a Root-mean-square errors 
653 |a Aerodynamics 
653 |a Effectiveness 
653 |a Estimates 
653 |a Algorithms 
653 |a Methods 
653 |a Estimation 
653 |a Parameter estimation 
653 |a Flight tests 
700 1 |a Wang, Qing  |u State Key Laboratory of Aerodynamics, , China Aerodynamics Research and Development Center, , Mianyang, , Sichuan, , China, <url href="http://cardc.cn">cardc.cn</url> 
700 1 |a Liu, Jin  |u Aerospace Technology Institute, , China Aerodynamics Research and Development Center, , Mianyang, , Sichuan, , China, <url href="http://cardc.cn">cardc.cn</url> 
700 1 |a Luo, Wei  |u Aerospace Technology Institute, , China Aerodynamics Research and Development Center, , Mianyang, , Sichuan, , China, <url href="http://cardc.cn">cardc.cn</url> 
700 1 |a Wang, An  |u Aerospace Technology Institute, , China Aerodynamics Research and Development Center, , Mianyang, , Sichuan, , China, <url href="http://cardc.cn">cardc.cn</url> 
773 0 |t International Journal of Aerospace Engineering  |g vol. 2025, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3266669981/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3266669981/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3266669981/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch