Effects of Lossy Compression Data on Machine Learning Models

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:ProQuest Dissertations and Theses (2025)
Үндсэн зохиолч: Faykus, Max H., III
Хэвлэсэн:
ProQuest Dissertations & Theses
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3266812951
003 UK-CbPIL
020 |a 9798297663008 
035 |a 3266812951 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Faykus, Max H., III 
245 1 |a Effects of Lossy Compression Data on Machine Learning Models 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Machine learning is a fundamental tool that is incorporated in every field across academia and other industries. Due to the large amount of data needed for training machine learning models, lossy compression plays a crucial role in storing data. Machine learning involves the use of algorithms and models to learn patterns in data. This allows the AI to make decisions without specific programming. On the other hand, compression utilizes encoding and decoding techniques to reduce the size of files. Compression is either lossy or lossless, lossy causes a loss of data while lossless preserves the data.This dissertation will explore the performance of machine learning when working with data that has undergone lossy compression. The performance metrics that are being studied looks at how accurate the model’s inference will perform (i.e. accuracy, intersection over union) depending on the task. The issues with machine learning performances on lossy data involve the following: data storage, data transfer bandwidth, and processing on the intersection between machine learning and lossy compression. Over these various tasks, machine learning in different domains will be examined to investigate how meaningful patterns in the distorted data is extracted.One approach explored in this work involves the analysis and design of various neural network models allowing the research to manage lossy compressed data in an isolated format. The primary focus will be on machine learning that works with image data. This also includes finding implications across various domains of image processing. Examples of this are object detection, semantic segmentation, and image classification. Balancing the compression ratio and the data quality is critical to measure performance of the model in compliance with the space used. 
653 |a Machine learning 
653 |a Deep learning 
653 |a Investigations 
653 |a Bandwidths 
653 |a Neural networks 
653 |a Data transmission 
653 |a High performance computing 
653 |a Data compression 
653 |a Semantics 
653 |a Artificial intelligence 
653 |a Computer science 
653 |a Design 
653 |a Logic 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3266812951/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3266812951/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch