2.C. Skills building seminar: Advanced Integrated Epidemiological Modeling to Quantify Chronic Disease Burden and Inform Policy

Guardat en:
Dades bibliogràfiques
Publicat a:European Journal of Public Health vol. 35, no. Supplement_4 (Oct 2025)
Autor principal: EUPHA Chronic Diseases section, EUPHA Public Health Economics section
Altres autors: Chair persons: Saverio Stranges (EUPHA-CHR), Raffaele Palladino (Italy)
Publicat:
Oxford University Press
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3266822046
003 UK-CbPIL
022 |a 1101-1262 
022 |a 1464-360X 
024 7 |a 10.1093/eurpub/ckaf161.085  |2 doi 
035 |a 3266822046 
045 2 |b d20251001  |b d20251031 
084 |a 53202  |2 nlm 
100 1 |a EUPHA Chronic Diseases section, EUPHA Public Health Economics section 
245 1 |a 2.C. Skills building seminar: Advanced Integrated Epidemiological Modeling to Quantify Chronic Disease Burden and Inform Policy 
260 |b Oxford University Press  |c Oct 2025 
513 |a Journal Article 
520 3 |a   Accurate and robust quantification of chronic disease burden is critical for effective health policy, strategic resource allocation, and cost-effective interventions. This skill-building seminar aims to enhance participants’ capacity to apply advanced, integrative modeling techniques to assess and forecast chronic disease burden using real-world health data. Organized by the EUPHA Chronic Disease and Public Health Economics sections, the seminar will review methodological tools combining epidemiology, biostatistics, AI, and health economics. Emphasis will be placed on scalable approaches that account for demographic and clinical heterogeneity, supporting their use across diverse health systems and epidemiological settings. The workshop includes four expert-led technical sessions: 1. Disease Identification and Profiling Using Linked Health Data - Use of algorithms and machine learning models to identify chronic conditions from routinely collected, multi-source healthcare data (e.g., electronic health records, claims, and registries), addressing underdiagnosis, misclassification bias, and missing data. 2. AI-Based Population-Level Disability Estimation and Trajectory Forecasting - Application of neural networks to estimate disability-adjusted metrics and simulate disease trajectories over time, incorporating uncertainty and dynamic covariates. 3. Quantitative Health Priority-Setting Frameworks - Tools such as Programme Budgeting and Marginal Analysis (PBMA), burden-of-disease metrics (e.g., DALYs), and equity-informed frameworks that support efficient, transparent decision-making by balancing disease burden, economic value, and fairness. 4. Health Economic Modeling for Policy Simulation - Cost-effectiveness analysis and dynamic modeling of public health interventions (e.g., screening programs, early detection strategies) to guide decisions under budget constraints. Applied examples will focus on neurological conditions and addictions-areas with substantial challenges in diagnosis, disability estimation, and long-term forecasting. Case studies will highlight profiling of neurological conditions with variable resource needs and evaluate screening strategies through simulated health-economic outcomes. Each session will integrate methodological depth with practical application. Participants will engage with adaptable modeling frameworks and interact with domain experts to examine data assumptions, methodological trade-offs, and potential biases. The seminar is designed for professionals with foundational knowledge in epidemiology, biostatistics, data science, or health economics who seek to deepen their skills in integrative modeling for chronic disease burden assessment and public health policy planning. Key messages • This seminar aims to build capacity in the use of advanced modeling tools to quantify and forecast chronic disease burden using integrated real-world health data. • Practical, expert-led sessions on disease identification, disability estimation, priority-setting, and policy simulation, with applied examples focusing on neurological conditions and addictions. 
653 |a Health promotion 
653 |a Bias 
653 |a Epidemiology 
653 |a Chronic conditions 
653 |a Economic models 
653 |a Skills 
653 |a Resource allocation 
653 |a Medical records 
653 |a Machine learning 
653 |a Seminars 
653 |a Electronic medical records 
653 |a Economics 
653 |a Computer simulation 
653 |a Heterogeneity 
653 |a Intervention 
653 |a Forecasting 
653 |a Missing data 
653 |a Health planning 
653 |a Epidemic models 
653 |a Value 
653 |a Case studies 
653 |a Effectiveness 
653 |a Public health 
653 |a Estimation 
653 |a Addictions 
653 |a Biostatistics 
653 |a Decision making 
653 |a Health policy 
653 |a Chronic illnesses 
653 |a Health economics 
653 |a Disability 
653 |a Policy making 
653 |a Dynamic models 
653 |a Health care policy 
653 |a Electronic health records 
653 |a Neural networks 
653 |a Data science 
653 |a Disease 
653 |a Simulation 
653 |a Mathematical models 
653 |a Health care expenditures 
653 |a Research methodology 
653 |a Identification 
653 |a Uncertainty 
653 |a Medical screening 
653 |a People with disabilities 
653 |a Budgets 
653 |a Medical diagnosis 
653 |a Budget constraint 
653 |a Measurement 
653 |a Cost analysis 
653 |a Frame analysis 
653 |a Health education 
653 |a Capacity building approach 
653 |a Neurological disorders 
653 |a Health services 
653 |a Artificial intelligence 
653 |a Computerized medical records 
653 |a Social 
700 1 |a Chair persons: Saverio Stranges (EUPHA-CHR), Raffaele Palladino (Italy) 
773 0 |t European Journal of Public Health  |g vol. 35, no. Supplement_4 (Oct 2025) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3266822046/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3266822046/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch