Experimental and Numerical Investigation on Gas–liquid Two-phase Flow Dynamics and Pressure Drop in Horizontal Contraction Pipes

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Journal of Applied Fluid Mechanics vol. 18, no. 12 (Dec 2025), p. 3082-3101
Үндсэн зохиолч: Wen, J
Бусад зохиолчид: Ren, Y, Wang, D, Bai, C
Хэвлэсэн:
Isfahan University of Technology
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3266887727
003 UK-CbPIL
022 |a 1735-3572 
022 |a 1735-3645 
024 7 |a 10.47176/jafm.18.12.3597  |2 doi 
035 |a 3266887727 
045 2 |b d20251201  |b d20251231 
100 1 |a Wen, J 
245 1 |a Experimental and Numerical Investigation on Gas–liquid Two-phase Flow Dynamics and Pressure Drop in Horizontal Contraction Pipes 
260 |b Isfahan University of Technology  |c Dec 2025 
513 |a Journal Article 
520 3 |a Contraction pipes are widely employed in pipeline systems to enable transitions between varying pipe diameters. The behavior of two-phase flow within these pipes and the resulting internal pressure drop can significantly influence the operation and safety of such systems. To explore the mechanisms linking two-phase pressure drop characteristics to flow patterns in horizontal contraction pipes, we designed and constructed an experimental setup. The pressure variations within the contraction pipe under different operating conditions were measured experimentally, and the phenomenon of vena contracta for two-phase flow with different flow patterns was analyzed using the Ω-vortex identification method based on the numerical simulation results. Stratified flow in contraction pipes exhibits significant interphase interactions, which inhibit the formation of vena contracta and impact pressure drop characteristics. Intermittent flow displays hybrid behaviors: resembling single-phase flow during liquid slug transit (with transient vena contracta formation) and stratified flow during gas bubble passage (suppressing vena contracta). By examining the vena contracta phenomenon across various flow patterns, we develop an improved pressure drop model for contraction pipes, extending the homogeneous flow model by incorporating a flow-pattern-dependent contraction coefficient. The pressure drop predicted by the improved model agrees with the experimental data within a 20% error band for 95% of the data points, demonstrating the validity of the proposed model. Compared with the homogeneous flow model, the improved model reduces the mean relative error by 12.52% and enhances the prediction accuracy of the contraction pressure drop for two-phase flow. 
653 |a Flow distribution 
653 |a Pipes 
653 |a Flow pattern 
653 |a Internal pressure 
653 |a Identification methods 
653 |a Pressure 
653 |a Stratified flow 
653 |a Impact loads 
653 |a Two phase flow 
653 |a Single-phase flow 
653 |a Pressure dependence 
653 |a Pressure drop 
653 |a Multiphase flow 
653 |a Mathematical models 
653 |a Data points 
653 |a Environmental 
700 1 |a Ren, Y 
700 1 |a Wang, D 
700 1 |a Bai, C 
773 0 |t Journal of Applied Fluid Mechanics  |g vol. 18, no. 12 (Dec 2025), p. 3082-3101 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3266887727/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3266887727/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch