Multi-UAV Trajectory Optimization Under Dynamic Threats: An Enhanced GWO Algorithm Integrating a Priori and Real-Time Data

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Computational Intelligence Systems vol. 18, no. 1 (Dec 2025), p. 140
Autor principal: Zhou, Zihan
Otros Autores: Guo, Yanhong, Wang, Yitao, Lyu, Jingfan, Gong, Haoran, Ye, Xin, Li, Yachao
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3267068422
003 UK-CbPIL
022 |a 1875-6891 
022 |a 1875-6883 
024 7 |a 10.1007/s44196-025-00863-y  |2 doi 
035 |a 3267068422 
045 2 |b d20251201  |b d20251231 
100 1 |a Zhou, Zihan  |u Dalian University of Technology, Institute for Advanced Intelligence, Dalian, China (GRID:grid.30055.33) (ISNI:0000 0000 9247 7930) 
245 1 |a Multi-UAV Trajectory Optimization Under Dynamic Threats: An Enhanced GWO Algorithm Integrating a Priori and Real-Time Data 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Though the widespread use of multi-UAV systems offers significant tactical and operational advantages, achieving efficient and secure collaborative planning remains a critical challenge in dynamic threat environments. Traditional methods struggle to balance path optimization with threat avoidance, particularly in fluctuating environments where UAVs must adapt to changing threats. To address this, an enhanced Grey Wolf Optimization (GWO) algorithm is proposed for multi-UAV collaborative planning in dynamic threat zones. Our research integrates a priori knowledge of threat zone locations, speeds, and directions with real-time data on the UAVs position relative to the threat zones to effectively manage dynamic threat zones, allowing UAVs to dynamically decide whether to navigate around or through these zones, thus significantly reducing trajectory costs. To further improve search efficiency and solution quality, strategies such as greedy initialization and K-means clustering are incorporated, enhancing the algorithms multi-objective optimization capabilities. Experimental results demonstrate that the dynamic threat zone crossing strategy significantly reduces trajectory costs compared to the traditional bypass strategy. Furthermore, the enhanced GWO algorithm outperforms both the traditional GWO and MP-GWO algorithms in terms of trajectory cost and convergence accuracy. Our approach provides novel insights and methodologies for the advancement of multi-UAV collaborative trajectory planning, while extending the applicability of the GWO algorithm in complex environments 
653 |a Collaboration 
653 |a Strategy 
653 |a Cluster analysis 
653 |a Trajectory optimization 
653 |a Unmanned aerial vehicles 
653 |a Clustering 
653 |a Planning 
653 |a Altitude 
653 |a Algorithms 
653 |a Multiple objective analysis 
653 |a Real time 
653 |a Optimization algorithms 
653 |a Trajectory planning 
653 |a Vector quantization 
653 |a Efficiency 
700 1 |a Guo, Yanhong  |u Dalian University of Technology, Institute for Advanced Intelligence, Dalian, China (GRID:grid.30055.33) (ISNI:0000 0000 9247 7930) 
700 1 |a Wang, Yitao  |u Operation Software and Simulation Institute, Dalian Naval Academy, Dalian, China (GRID:grid.30055.33) (ISNI:0000 0004 1759 9427) 
700 1 |a Lyu, Jingfan  |u Dalian University of Technology, Institute for Advanced Intelligence, Dalian, China (GRID:grid.30055.33) (ISNI:0000 0000 9247 7930) 
700 1 |a Gong, Haoran  |u Dalian University of Technology, Institute for Advanced Intelligence, Dalian, China (GRID:grid.30055.33) (ISNI:0000 0000 9247 7930) 
700 1 |a Ye, Xin  |u Dalian University of Technology, Institute for Advanced Intelligence, Dalian, China (GRID:grid.30055.33) (ISNI:0000 0000 9247 7930) 
700 1 |a Li, Yachao  |u Xidian University, School of Electronic Engineering, Xi’an, China (GRID:grid.440736.2) (ISNI:0000 0001 0707 115X) 
773 0 |t International Journal of Computational Intelligence Systems  |g vol. 18, no. 1 (Dec 2025), p. 140 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3267068422/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3267068422/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3267068422/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch