A Smart Recommender System for Stroke Risk Assessment with an Integrated Strokebot

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal of Medical and Biological Engineering vol. 44, no. 6 (Dec 2024), p. 799
Autor principal: Argymbay, Mariyam
Outros Autores: Khan, Shams, Ahmad, Noman, Salih, Mira, Mamatjan, Yasin
Publicado em:
Springer Nature B.V.
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3267292367
003 UK-CbPIL
022 |a 1609-0985 
022 |a 2199-4757 
022 |a 1019-0465 
024 7 |a 10.1007/s40846-024-00922-3  |2 doi 
035 |a 3267292367 
045 2 |b d20241201  |b d20241231 
100 1 |a Argymbay, Mariyam  |u Thompson Rivers University, Faculty of Science, Kamloops, Canada (GRID:grid.265014.4) (ISNI:0000 0000 9945 2031) 
245 1 |a A Smart Recommender System for Stroke Risk Assessment with an Integrated Strokebot 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a PurposeWe present a machine learning-based online recommendation system for stroke risk assessments. With this tool, users will be able to take proactive steps in managing their health by predicting stroke risk based on diverse data input, providing transparent and reliable risk factor interpretations, and helping healthcare professionals make informed clinical decisions.MethodsThis study uses the publicly available Stroke Analysis dataset. To predict stroke risk, the CatBoost classifier is employed, while the XAI component incorporates SHAP explainer to provide insights into its reasoning. A Django-based web application allows users to upload risk factor data and receive personalized stroke risk predictions. Smartwatch integration allows continuous monitoring of dynamic risk factors. BioMistral 7B Large Language Models (LLM) is employed to create an intuitive AI medical assistant.ResultsThe developed automated online recommender system is highly accurate and robust for stroke risk assessment. The CatBoost classifier shows an average AUC of 0.98. In addition to the SHAP explainer, the recommender system also integrates Google Maps, Alert System, and Q/A chatbot based on LLMs.ConclusionAccording to the study, AI-driven systems can assist in stroke risk assessment and preventive care strategies. Developing a user-friendly online recommender system provides proof of principle for an efficient and user-friendly health management tool using machine learning, explainable AI, and LLM. 
653 |a Software 
653 |a Datasets 
653 |a Recommender systems 
653 |a Applications programs 
653 |a Body mass index 
653 |a Gender 
653 |a Risk factors 
653 |a Cholesterol 
653 |a Feature selection 
653 |a Machine learning 
653 |a Explainable artificial intelligence 
653 |a Risk assessment 
653 |a Learning algorithms 
653 |a Patients 
653 |a Smartwatches 
653 |a Large language models 
653 |a Heart attacks 
653 |a Blood pressure 
653 |a Classification 
653 |a Glucose 
653 |a Wearable computers 
653 |a Natural language processing 
653 |a Ischemia 
700 1 |a Khan, Shams  |u Thompson Rivers University, Faculty of Science, Kamloops, Canada (GRID:grid.265014.4) (ISNI:0000 0000 9945 2031) 
700 1 |a Ahmad, Noman  |u Thompson Rivers University, Faculty of Science, Kamloops, Canada (GRID:grid.265014.4) (ISNI:0000 0000 9945 2031) 
700 1 |a Salih, Mira  |u Harvard Medical School, Beth Israel Deaconess Medical Center, Brain Aneurysm Institute, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X) 
700 1 |a Mamatjan, Yasin  |u Thompson Rivers University, Faculty of Science, Kamloops, Canada (GRID:grid.265014.4) (ISNI:0000 0000 9945 2031) 
773 0 |t Journal of Medical and Biological Engineering  |g vol. 44, no. 6 (Dec 2024), p. 799 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3267292367/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3267292367/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3267292367/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch