A Study of Multi-distributed Resource Equalization Allocation for Virtual Power Plants Based on Genetic-heuristic Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Computational Intelligence Systems vol. 18, no. 1 (Dec 2025), p. 200
Autor principal: Li, Haifeng
Otros Autores: Jin, Tao, Xu, Xian, Shi, Lin
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3267459296
003 UK-CbPIL
022 |a 1875-6891 
022 |a 1875-6883 
024 7 |a 10.1007/s44196-025-00941-1  |2 doi 
035 |a 3267459296 
045 2 |b d20251201  |b d20251231 
100 1 |a Li, Haifeng  |u State Grid Jiangsu Electric Power Company, Ltd, Taizhou Jiangsu, China (GRID:grid.433158.8) (ISNI:0000 0000 8891 7315) 
245 1 |a A Study of Multi-distributed Resource Equalization Allocation for Virtual Power Plants Based on Genetic-heuristic Algorithm 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable load characteristics, an optimization model is constructed with objectives of resource allocation balance and minimization of call costs, subject to constraints such as power balance. Combining the global search capability of a genetic algorithm and the local optimization capability of an ant colony algorithm, the genetic algorithm stage adopts real-number encoding and a dynamic crossover-mutation strategy, while the ant colony algorithm stage optimizes the pheromone update mechanism to avoid premature convergence. The experimental results show that this method achieves 100% accurate allocation of resources without any over-generation occurrences and reduces the resource allocation deviation rate by 32–67% compared to alternative methods. The algorithm demonstrates fast convergence, yielding solutions in less than 0.6 s across 14 repeated experiments, with an average convergence time reduction of 42% compared to traditional algorithms. Under a comprehensive fluctuation scenario with 30% renewable energy fluctuation rate and 15% load forecasting error, the system stability index remains at 0.865, demonstrating the algorithm’s efficiency and robustness under complex conditions and providing an effective approach for optimizing virtual power plant resource allocation. 
653 |a Collaboration 
653 |a Distributed generation 
653 |a Power plants 
653 |a Optimization techniques 
653 |a Resource allocation 
653 |a Virtual power plants 
653 |a Supply & demand 
653 |a Systems stability 
653 |a Energy storage 
653 |a Energy resources 
653 |a Ant colony optimization 
653 |a Heuristic 
653 |a Fuzzy logic 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Optimization models 
653 |a Scheduling 
653 |a Convergence 
653 |a Genetic algorithms 
653 |a Electricity 
653 |a Alternative energy 
653 |a Costs 
653 |a Renewable resources 
653 |a Energy management 
653 |a Flexibility 
653 |a Consumption 
653 |a Power supply 
653 |a Controllability 
653 |a Local optimization 
653 |a Optimization algorithms 
700 1 |a Jin, Tao  |u State Grid Jiangsu Electric Power Company, Ltd, Taizhou Jiangsu, China (GRID:grid.433158.8) (ISNI:0000 0000 8891 7315) 
700 1 |a Xu, Xian  |u State Grid Jiangsu Electric Power Company, Ltd, Taizhou Jiangsu, China (GRID:grid.433158.8) (ISNI:0000 0000 8891 7315) 
700 1 |a Shi, Lin  |u State Grid Jiangsu Electric Power Company, Ltd, Taizhou Jiangsu, China (GRID:grid.433158.8) (ISNI:0000 0000 8891 7315) 
773 0 |t International Journal of Computational Intelligence Systems  |g vol. 18, no. 1 (Dec 2025), p. 200 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3267459296/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3267459296/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3267459296/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch