Spatial development of brain networks during the first six postnatal months

Guardado en:
Bibliografiske detaljer
Udgivet i:Communications Biology vol. 8, no. 1 (2025), p. 1514-1532
Hovedforfatter: Seraji, Masoud
Andre forfattere: Shultz, Sarah, Li, Qiang, Fu, Zening, Calhoun, Vince D., Iraji, Armin
Udgivet:
Nature Publishing Group
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3267545610
003 UK-CbPIL
022 |a 2399-3642 
024 7 |a 10.1038/s42003-025-08913-z  |2 doi 
035 |a 3267545610 
045 2 |b d20250101  |b d20251231 
100 1 |a Seraji, Masoud  |u Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, USA (ROR: https://ror.org/01zkghx44) (GRID: grid.213917.f) (ISNI: 0000 0001 2097 4943); School of Psychology, University of Texas at Austin, Austin, TX, USA (ROR: https://ror.org/00hj54h04) (GRID: grid.89336.37) (ISNI: 0000 0004 1936 9924) 
245 1 |a Spatial development of brain networks during the first six postnatal months 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a The early postnatal period is crucial for brain development and understanding neurodevelopmental disorders. This study examines spatial brain network development in early infancy, a less-explored area. Using independent component analysis on longitudinal resting-state functional magnetic resonance imaging data from 74 neurotypical infants, we examined how the spatial organization of brain networks evolves from birth to 6 months. Our findings show significant age-related changes in spatial characteristics. Network-averaged spatial similarity, reflecting alignment between individual and group-level network maps, increased with age. Concurrently, network engagement range, representing voxel intensity fluctuation within networks, decreased, suggesting a consolidation process where voxel contributions became more uniform. Network strength, calculated as the average of all the significant voxel intensities in the network, indicating the degree of involvement in the specific functional network, increased across age in networks such as the frontal-medial prefrontal cortex and visual networks. We found that network size and network center of mass (illustrating spatial distribution alterations of brain networks) increased in the temporal network. These findings fill a gap in infant neuroimaging by spatially characterizing early functional network development. Quantifying changes in topology, size, and similarity offers a framework for understanding early brain maturation and identifying atypical trajectories.Longitudinal rs-fMRI (n = 74) charts rapid spatial maturation of infant brain networks over the first 6 months: greater spatial similarity, tighter voxel engagement, and network-specific gains in strength, size, and centroids. 
610 4 |a Emory University 
653 |a Spatial distribution 
653 |a Magnetic resonance imaging 
653 |a Functional magnetic resonance imaging 
653 |a Scanners 
653 |a Maturation 
653 |a Headphones 
653 |a Infants 
653 |a Brain research 
653 |a Temporal lobe 
653 |a Autism 
653 |a Neurodevelopmental disorders 
653 |a Brain architecture 
653 |a Age 
653 |a Modularity 
653 |a Cortex (frontal) 
653 |a Neuroimaging 
653 |a Pediatrics 
653 |a Longitudinal studies 
653 |a Postpartum period 
653 |a Gestational age 
653 |a Babies 
653 |a Prefrontal cortex 
700 1 |a Shultz, Sarah  |u Marcus Autism Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA (ROR: https://ror.org/050fhx250) (GRID: grid.428158.2) (ISNI: 0000 0004 0371 6071); Division of Autism & Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA (ROR: https://ror.org/03czfpz43) (GRID: grid.189967.8) (ISNI: 0000 0001 0941 6502) 
700 1 |a Li, Qiang  |u Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, USA (ROR: https://ror.org/01zkghx44) (GRID: grid.213917.f) (ISNI: 0000 0001 2097 4943) 
700 1 |a Fu, Zening  |u Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, USA (ROR: https://ror.org/01zkghx44) (GRID: grid.213917.f) (ISNI: 0000 0001 2097 4943) 
700 1 |a Calhoun, Vince D.  |u Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, USA (ROR: https://ror.org/01zkghx44) (GRID: grid.213917.f) (ISNI: 0000 0001 2097 4943) 
700 1 |a Iraji, Armin  |u Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, USA (ROR: https://ror.org/01zkghx44) (GRID: grid.213917.f) (ISNI: 0000 0001 2097 4943); Department of Computer Science, Georgia State University, Atlanta, GA, USA (ROR: https://ror.org/03qt6ba18) (GRID: grid.256304.6) (ISNI: 0000 0004 1936 7400) 
773 0 |t Communications Biology  |g vol. 8, no. 1 (2025), p. 1514-1532 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3267545610/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3267545610/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3267545610/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch