TrajRL-TFF: A Trajectory Representation Learning Method Based on Time-domain and Frequency-domain Feature Fusion

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational Urban Science vol. 5, no. 1 (Dec 2025), p. 60
Hlavní autor: Liu, Kang
Další autoři: Lin, Zhiying, Zhu, Kemin, Yin, Ling, Zheng, Jianze, Feng, Yongheng, Wang, Shaohua, Zhang, Yan
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3267569664
003 UK-CbPIL
022 |a 2730-6852 
024 7 |a 10.1007/s43762-025-00219-4  |2 doi 
035 |a 3267569664 
045 2 |b d20251201  |b d20251231 
100 1 |a Liu, Kang  |u Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
245 1 |a TrajRL-TFF: A Trajectory Representation Learning Method Based on Time-domain and Frequency-domain Feature Fusion 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Trajectory representation learning transforms raw trajectory data (sequences of spatiotemporal points) into low-dimensional representation vectors to improve downstream tasks such as trajectory similarity computation, prediction, and classification. Existing models primarily adopt self-supervised learning frameworks, often employing models like Recurrent Neural Networks (RNNs) as encoders to capture local dependency in trajectory sequences. However, individual mobility within urban areas exhibits regular and periodic patterns, suggesting the need for a more comprehensive representation from both local and global perspectives. To address this, we propose TrajRL-TFF, a trajectory representation learning method based on time-domain and frequency-domain feature fusion. First, considering the heterogeneous distribution of trajectory data in space, a quadtree is employed for spatial partitioning and coding. Then, each trajectory is converted into a quadtree-code based time series (i.e., time-domain signal), with its corresponding frequency-domain signal derived via Discrete Fourier Transform (DFT). Finally, a trajectory encoder, combining an RNN-based time-domain encoder and a Transformer-based frequency domain encoder, is constructed to capture the trajectory’s local and global features, respectively, and trained by a self-supervised sequence encoding-decoding framework with trajectory perturbation-reconstruction task. Experiments demonstrate that TrajRL-TFF outperforms baselines in downstream tasks including trajectory querying and prediction, confirming that integrating time- and frequency-domain signals enables a more comprehensive representation of human mobility regularities and patterns, which provides valuable guidance for trajectory representation learning and trajectory modeling in future studies. 
653 |a Fourier transforms 
653 |a Self-supervised learning 
653 |a Traffic 
653 |a Frequency domain analysis 
653 |a Recurrent neural networks 
653 |a Time domain analysis 
653 |a Design 
653 |a Learning 
653 |a Encoding-Decoding 
653 |a Sequences 
653 |a Machine learning 
653 |a Time series 
653 |a Coders 
653 |a Urban areas 
653 |a Neural networks 
653 |a Representations 
653 |a Semantics 
653 |a Economic 
700 1 |a Lin, Zhiying  |u Southern University of Science and Technology, Shenzhen, China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
700 1 |a Zhu, Kemin  |u Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
700 1 |a Yin, Ling  |u Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
700 1 |a Zheng, Jianze  |u Sun Yat-Sen University, Shenzhen, China (GRID:grid.12981.33) (ISNI:0000 0001 2360 039X) 
700 1 |a Feng, Yongheng  |u Peking University, College of Urban and Environmental Sciences, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319) 
700 1 |a Wang, Shaohua  |u Aerospace Information Research Institute, Chinese Academy of Sciences, State Key Laboratory of Remote Sensing Science, Beijing, China (GRID:grid.507725.2); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
700 1 |a Zhang, Yan  |u SmartSteps, Beijing, China (GRID:grid.410726.6) 
773 0 |t Computational Urban Science  |g vol. 5, no. 1 (Dec 2025), p. 60 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3267569664/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3267569664/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3267569664/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch