PhysioFormer: Integrating multimodal physiological signals and symbolic regression for explainable affective state prediction

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 10 (Oct 2025), p. e0335221
Autor principal: Wang, Zhifeng
Otros Autores: Wu, Wanxuan, Zeng, Chunyan, Shen, Jialiang
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3267604977
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0335221  |2 doi 
035 |a 3267604977 
045 2 |b d20251001  |b d20251031 
084 |a 174835  |2 nlm 
100 1 |a Wang, Zhifeng 
245 1 |a PhysioFormer: Integrating multimodal physiological signals and symbolic regression for explainable affective state prediction 
260 |b Public Library of Science  |c Oct 2025 
513 |a Journal Article 
520 3 |a As affective computing becomes increasingly crucial in health monitoring and psychological intervention, accurately identifying affective states is a key challenge. While traditional machine learning models have achieved some success in affective computation, their ability to handle complex, multimodal physiological signals is limited. Most affective computing tasks still rely heavily on traditional methods, with few deep learning models applied, particularly in multimodal signal processing. Given the importance of stress monitoring for mental health, developing a highly reliable and accurate affective computing model is essential. In this context, we propose a novel model—PhysioFormer, for affective state prediction using physiological signals. PhysioFormer model integrates individual attributes and multimodal physiological data to address inter-individual variability, enhancing its reliability and generalization across different individuals. By incorporating feature embedding and affective representation modules, PhysioFormer model captures dynamic changes in time-series data and multimodal signal features, significantly improving accuracy. The model also includes an explainability model that uses symbolic regression to extract laws linking physiological signals to affective states, increasing transparency and explainability. Experiments conducted on the Wrist and Chest subsets of the WESAD dataset confirmed the model’s superior performance, achieving over 99% accuracy, outperforming existing SOTA models. Sensitivity and ablation experiments further demonstrated PhysioFormer’s reliability, validating the contribution of its individual components. The integration of symbolic regression not only enhanced model explainability but also highlighted the complex relationships between physiological signals and affective states. Future work will focus on optimizing the model for larger datasets and real-time applications, particularly in more complex environments. Additionally, further exploration of physiological signals and environmental factors will help build a more comprehensive affective computing system, advancing its use in health monitoring and psychological intervention. 
653 |a Models 
653 |a Affective computing 
653 |a Task complexity 
653 |a Ablation 
653 |a Electrocardiography 
653 |a Chronic illnesses 
653 |a Physiological effects 
653 |a Machine learning 
653 |a Emotions 
653 |a Deep learning 
653 |a Signal processing 
653 |a Accuracy 
653 |a Regression 
653 |a Datasets 
653 |a Physiology 
653 |a Reliability 
653 |a Decision making 
653 |a Wrist 
653 |a Mental health 
653 |a Emotional behavior 
653 |a Environmental factors 
653 |a Real time 
653 |a Embedding 
653 |a Social 
700 1 |a Wu, Wanxuan 
700 1 |a Zeng, Chunyan 
700 1 |a Shen, Jialiang 
773 0 |t PLoS One  |g vol. 20, no. 10 (Oct 2025), p. e0335221 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3267604977/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3267604977/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3267604977/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch