Development of warning systems for Phoma leaf spot in coffee

Guardado en:
Detalles Bibliográficos
Publicado en:Acta Scientiarum. Agronomy vol. 47, no. 1 (2025), p. e71454-e71463
Autor principal: Pozza, Edson Ampélio
Otros Autores: Aurivan Soares de Freitas, Marcelo Loran de Oliveira Freitas, Leônidas Leoni Belan, Mauro Peraro Barbosa Junior, Mário Javier Ferrua Vivanco, Helon Santos Neto
Publicado:
Editora da Universidade Estadual de Maringá - EDUEM
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3267737532
003 UK-CbPIL
022 |a 1679-9275 
022 |a 1807-8621 
024 7 |a 10.4025/actasciagron.v47i1.71454  |2 doi 
035 |a 3267737532 
045 2 |b d20250101  |b d20251231 
084 |a 262929  |2 nlm 
100 1 |a Pozza, Edson Ampélio 
245 1 |a Development of warning systems for Phoma leaf spot in coffee 
260 |b Editora da Universidade Estadual de Maringá - EDUEM  |c 2025 
513 |a Journal Article 
520 3 |a Statistical models can help in decision-making for the control of plant diseases, leading to less use of inputs, greater economy, and less negative environmental impact. Thus, this study aimed to use environmental variables to fit multiple linear regression (MLR) models for estimating the Phoma leaf spot incidence in coffee to develop a warning system. The experiment was conducted over two years (September 2013 to August 2015) with monthly disease assessments in the Coffea arabica L. cultivar “Catucaí amarelo 2SL”. A regular grid of 7.65 ha with 85 points delimited the area, with the points spaced 30 x 30 m. The incidence progress curve was constructed by considering the overall mean of the 85 points in each month. Fifty-two environmental variables were generated using an automatic station installed in the crop, and these variables were used in the development of the MLR models. A total of 126 models were fit, of which four were more successful in estimating disease dynamics over time. Two of these models allowed the acquisition of estimated values for disease incidence two weeks prior to the disease assessments, with high precision and accuracy. Nowadays the disease management has been performed exclusively with the use of fixed spraying schedules of fungicides. The models obtained in our research can contribute to sustainability of coffee production, to avoid unnecessary use of fungicides and become coffee cultivation more profitable. 
653 |a Warning systems 
653 |a Fungicides 
653 |a Assessments 
653 |a Coffee 
653 |a Regression analysis 
653 |a Leafspot 
653 |a Plant diseases 
653 |a Statistical models 
653 |a Cultivars 
653 |a Leaves 
653 |a Statistical analysis 
653 |a Environmental impact 
653 |a Spraying 
653 |a Decision making 
653 |a Phoma 
653 |a Environmental 
700 1 |a Aurivan Soares de Freitas 
700 1 |a Marcelo Loran de Oliveira Freitas 
700 1 |a Leônidas Leoni Belan 
700 1 |a Mauro Peraro Barbosa Junior 
700 1 |a Mário Javier Ferrua Vivanco 
700 1 |a Helon Santos Neto 
773 0 |t Acta Scientiarum. Agronomy  |g vol. 47, no. 1 (2025), p. e71454-e71463 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3267737532/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3267737532/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch