Enhanced ransomware attacks detection using feature selection, sensitivity analysis, and optimized hybrid model

Guardado en:
Bibliografiske detaljer
Udgivet i:Journal of Big Data vol. 12, no. 1 (Nov 2025), p. 245
Hovedforfatter: Zhang, Kun
Andre forfattere: Wang, Yetong, Bhatti, Uzair Aslam, Zhou, Yu, Jin, Ming
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3268285494
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01289-1  |2 doi 
035 |a 3268285494 
045 2 |b d20251101  |b d20251130 
100 1 |a Zhang, Kun  |u Hainan Normal University, School of Information Science and Technology, Haikou, China (GRID:grid.440732.6) (ISNI:0000 0000 8551 5345); Hainan University, School of Information and Communication Engineering, Haikou, China (GRID:grid.428986.9) (ISNI:0000 0001 0373 6302); Hainan Normal University, Hainan Engineering Research Center for Smart Education Technology, Haikou, China (GRID:grid.440732.6) (ISNI:0000 0000 8551 5345) 
245 1 |a Enhanced ransomware attacks detection using feature selection, sensitivity analysis, and optimized hybrid model 
260 |b Springer Nature B.V.  |c Nov 2025 
513 |a Journal Article 
520 3 |a Problem statementRansomware attacks pose a severe threat to organizations by exploiting security weaknesses, most often leading to colossal economic and information loss. There is a growing need for efficient and accurate predictive models to detect and prevent such attacks in real-time cybersecurity applications.MethodologyThis paper utilizes the UGRansome dataset, which is a large-scale ransomware and zero-day attack detector. The F-measure method is employed in this paper as a novel method for enhancing model interpretability and preventing redundancy. The Histogram Gradient Boosting classifier, which is optimized, is subsequently enhanced with three advanced metaheuristic optimizers. Sensitivity analysis provides transparent insights into the effects of individual attributes through explainable AI. Finally, the Wilcoxon ranking test is applied to ensure the statistical significance of the performance gain, and K-fold cross-validation ensures robustness and generalizability of the reported models. In addition, Recursive Feature Elimination (RFE) is also applied to rank the features to identify the most important predictors methodically. Sensitivity analysis is also performed utilizing SHapley Additive exPlanations (SHAP) values to present explainable and transparent perspectives on individual feature impacts on the model’s output.ResultsThe hybrid models proposed here exhibit significant gains in prediction accuracy, precision, and recall. The feature importance analysis indicates that economic and behavioral features of the network equally contribute to correct ransomware identification.ContributionsThis work introduces an evaluation of a strong and scalable model for ransomware forecasting that enables organizations to predict threats ahead of time and improve their general cybersecurity capabilities. The integration of cutting-edge feature selection with nature-inspired optimization enables the framework to create more accurate models while maintaining interpretability and efficiency. The method is directly translatable to real-world scenarios, including enhancing cloud security, detecting zero-day attacks, and supporting mass-scale automated threat scanning in fluctuating cybersecurity environments. 
653 |a Medical diagnosis 
653 |a Small business 
653 |a Machine learning 
653 |a Accuracy 
653 |a Deep learning 
653 |a Trends 
653 |a Sensitivity analysis 
653 |a Prediction models 
653 |a Organizations 
653 |a Optimization 
653 |a Small & medium sized enterprises-SME 
653 |a Classification 
653 |a Digital currencies 
653 |a Feature selection 
653 |a Ransomware 
653 |a Malware 
653 |a Algorithms 
653 |a Outdoor air quality 
653 |a Real time 
653 |a Cloud computing 
653 |a Explainable artificial intelligence 
653 |a Cybersecurity 
653 |a Heuristic methods 
653 |a Big Data 
653 |a Measures 
653 |a Statistical significance 
653 |a Threats 
653 |a Redundancy 
653 |a Models 
653 |a Robustness 
653 |a Generalizability 
653 |a Classifiers 
653 |a Recursion 
653 |a Security 
653 |a Elimination 
653 |a Forecasting 
700 1 |a Wang, Yetong  |u Hainan Vocational University of Science and Technology, Hainan Engineering Research Center for Virtual Reality Technology and Systems, Haikou, China (GRID:grid.440732.6) 
700 1 |a Bhatti, Uzair Aslam  |u Hainan University, School of Information and Communication Engineering, Haikou, China (GRID:grid.428986.9) (ISNI:0000 0001 0373 6302) 
700 1 |a Zhou, Yu  |u Hainan Normal University, School of Information Science and Technology, Haikou, China (GRID:grid.440732.6) (ISNI:0000 0000 8551 5345); Hainan Normal University, Hainan Engineering Research Center for Smart Education Technology, Haikou, China (GRID:grid.440732.6) (ISNI:0000 0000 8551 5345) 
700 1 |a Jin, Ming  |u Hainan Normal University, School of Foreign Languages, Haikou, China (GRID:grid.440732.6) (ISNI:0000 0000 8551 5345) 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Nov 2025), p. 245 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268285494/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268285494/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268285494/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch