Fraudulent account detection in social media using hybrid deep transformer model and hyperparameter optimization

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 38447-38470
Autor principal: Shukla, Prashant Kumar
Otros Autores: Veerasamy, Bala Dhandayuthapani, Alduaiji, Noha, Addula, Santosh Reddy, Pandey, Ankur, Shukla, Piyush Kumar
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3268295892
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-24326-8  |2 doi 
035 |a 3268295892 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Shukla, Prashant Kumar  |u Department of Computer Science and Engineering & Deputy Dean Research, Amity School of Engineering and Technology (ASET), Amity University Mumbai, 410206, Mumbai, Maharashtra, India (ROR: https://ror.org/02n9z0v62) (GRID: grid.444644.2) (ISNI: 0000 0004 1805 0217) 
245 1 |a Fraudulent account detection in social media using hybrid deep transformer model and hyperparameter optimization 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a The high rate of social media development has triggered a high rate of fake accounts, which are a great risk to the privacy of users and the integrity of the platform. These malicious accounts are hard to detect because user activity data is highly imbalanced, dimensional, and sequential. The emergence of fake profiles on social media endangers the privacy and trust of social media users. It is difficult to detect such accounts because of high-dimensional, highly sequential, and imbalanced user behavior data. Current techniques tend to miss out on the complicated activity patterns or even overfit, which is why a strong, scalable, and precise model of social media fraud detection is required. This study suggests a new deep learning architecture that entails a Temporal Convolutional Network (TCN) with Generative Adversarial Network (GAN)-based data augmentation to generate minority classes, and Autoencoder-based feature extraction to reduce dimensionality. The Seagull Optimization Algorithm (SOA), which is a metaheuristic algorithm, is used to optimize hyperparameters by balancing efficiency and speed of convergence in global search. The framework is tested on benchmark datasets (Cresci-2017 and TwiBot-22) and compared to the state-of-the-art models. It has been shown in experiments that the suggested TCN-GAN-SOA framework performs better, with ROC-AUC scores of 0.96 on Cresci-2017 and 0.95 on TwiBot-22, and a higher precision-recall value and better F1-scores. In addition, computational efficiency can be verified by the runtime analysis; case studies prove the framework’s strength when handling various situations of fraudulent behaviors. The given solution offers a scalable, reliable, and accurate methodology of detecting social media fraud based on the combination of sophisticated sequence modeling, realistic data augmentation, and hyperparameter optimization. 
653 |a Accuracy 
653 |a Datasets 
653 |a Deepfake 
653 |a Deep learning 
653 |a Artificial intelligence 
653 |a Algorithms 
653 |a Fraud prevention 
653 |a Fraud 
653 |a Optimization 
653 |a Real time 
653 |a Sensors 
653 |a Neural networks 
653 |a Social networks 
653 |a False information 
653 |a Linguistics 
653 |a Literature reviews 
653 |a Activity patterns 
653 |a Social 
700 1 |a Veerasamy, Bala Dhandayuthapani  |u University of Technology and Applied Sciences-Shinas, Shinas, Oman (ROR: https://ror.org/018g8cj68) 
700 1 |a Alduaiji, Noha  |u Department of Computer Science, College of Computer and Information Sciences, Majmaah University, 11952, Al Majmaah, Saudi Arabia (ROR: https://ror.org/01mcrnj60) (GRID: grid.449051.d) (ISNI: 0000 0004 0441 5633) 
700 1 |a Addula, Santosh Reddy  |u Department of Information Technology, University of the Cumberlands, Williamsburg, KY, United States of America (ROR: https://ror.org/05jz3sn81) (GRID: grid.441548.8) (ISNI: 0000 0000 9229 3752) 
700 1 |a Pandey, Ankur  |u Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India (ROR: https://ror.org/040h76494) (ISNI: 0000 0004 4661 2475) 
700 1 |a Shukla, Piyush Kumar  |u Department of Computer Science & Engineering, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), 462033, Bhopal, Madhya Pradesh, India (ROR: https://ror.org/03xmje391) (GRID: grid.430236.0) (ISNI: 0000 0000 9264 2828) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 38447-38470 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268295892/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268295892/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268295892/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch