Identification of dietary supplement use from electronic health records using transformer-based language models

Sparad:
Bibliografiska uppgifter
I publikationen:BMC Medical Informatics and Decision Making vol. 22 (2025), p. 1-12
Huvudupphov: Zhou, Sicheng
Övriga upphov: Schutte, Dalton, Xing, Aiwen, Chen, Jiyang, Wolfson, Julian, He, Zhe, Yu, Fang, Zhang, Rui
Utgiven:
Springer Nature B.V.
Ämnen:
Länkar:Citation/Abstract
Full Text
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3268429972
003 UK-CbPIL
022 |a 1472-6947 
024 7 |a 10.1186/s12911-025-03252-9  |2 doi 
035 |a 3268429972 
045 2 |b d20250101  |b d20251231 
084 |a 58451  |2 nlm 
100 1 |a Zhou, Sicheng 
245 1 |a Identification of dietary supplement use from electronic health records using transformer-based language models 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundAlzheimer’s disease (AD) and related dementias (ADRD) are common in older adults, their prevention and management are challenging problems. To prevent or delay ADRD, dietary supplements (DS) have emerged as a promising treatment; however, the role of DS usage on disease progression of patients with cognitive impairments remains unclear. Little clinical trial evidence is available, but substantial information is contained in electronic health records (EHR), including structured and unstructured data about patients’ DS usage and disease status. The objectives of this study were to (1) develop accurate natural language processing (NLP) methods to extract DS usage for patients with Mild Cognitive Impairment (MCI) and ADRD, (2) examine the coverage of DS in structured data versus unstructured data and (3) compare DS usage information in EHR with National Health and Nutrition Examination Survey (NHANES) data.MethodsWe collected EHR data for patients with MCI and ADRD. A pipeline to extract the usage information of DS from both structured data and unstructured clinical notes was developed in the study. For structured data, we used the medication table to identify the DS and for unstructured clinical notes, we applied Bidirectional Encoder Representations from Transformers (BERT) fine-tuning strategy to extract the DS usage status.ResultsThe best named entity recognition model for DS achieved an F1-score of 0.964 and the PubMed BERT-based use status classifier had a weighted F1-score of 0.879. We applied these models to extract DS usage information from unstructured clinical notes and subsequently compared and combined with those from structured medication orders. In total, 125 unique DS were identified for patients with MCI and 108 unique DS were identified for patients with ADRD.ConclusionsIn this study, we developed an NLP-based pipeline to extract the DS use information from medication structured data and clinical notes in EHR for patients with MCI and ADRD. Our method could further help understand the DS usage of patients with MCI and ADRD, and how these DS could influence the diseases. 
651 4 |a United States--US 
653 |a Cognitive ability 
653 |a Dietary supplements 
653 |a Alzheimer's disease 
653 |a Vitamin E 
653 |a Vitamin B 
653 |a Fatty acids 
653 |a Neurodegenerative diseases 
653 |a Electronic medical records 
653 |a Electronic health records 
653 |a Cognition & reasoning 
653 |a Patients 
653 |a Prevention 
653 |a Classification 
653 |a Clinical trials 
653 |a Structured data 
653 |a Natural language processing 
653 |a Information processing 
653 |a Unstructured data 
653 |a Transformers 
653 |a Older people 
700 1 |a Schutte, Dalton 
700 1 |a Xing, Aiwen 
700 1 |a Chen, Jiyang 
700 1 |a Wolfson, Julian 
700 1 |a He, Zhe 
700 1 |a Yu, Fang 
700 1 |a Zhang, Rui 
773 0 |t BMC Medical Informatics and Decision Making  |g vol. 22 (2025), p. 1-12 
786 0 |d ProQuest  |t Healthcare Administration Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268429972/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268429972/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268429972/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch