Comparative transcriptome analysis unravels distinct regulatory mechanisms governing fiber development in red silk cotton tree (Bombax ceiba)

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:BMC Plant Biology vol. 25 (2025), p. 1-15
מחבר ראשי: Yu, Anmin
מחברים אחרים: Yuan, Guofang, Sun, Jing, Gao, Yong, Tang, Lizhou, Xu, Jianchu, Liu, Aizhong, Tian, Bin
יצא לאור:
Springer Nature B.V.
נושאים:
גישה מקוונת:Citation/Abstract
Full Text
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3268447688
003 UK-CbPIL
022 |a 1471-2229 
024 7 |a 10.1186/s12870-025-07413-w  |2 doi 
035 |a 3268447688 
045 2 |b d20250101  |b d20251231 
084 |a 58484  |2 nlm 
100 1 |a Yu, Anmin 
245 1 |a Comparative transcriptome analysis unravels distinct regulatory mechanisms governing fiber development in red silk cotton tree (<i>Bombax ceiba</i>) 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Bombax ceiba a multipurpose tree that has recently garnered increasing interest due to the unique characteristics of its fibers, which hold promise for commercial textile applications. These fibers, derived from the inner epidermis of the fruit, are fine, lightweight, highly hollow, and exhibit excellent thermal insulation. Notably, they lack natural twist—an uncommon feature among plant-derived fibers. While this feature contributes to their distinctive structure, it also results in low tensile strength, rendering them unsuitable for conventional spinning processes and limiting their utility in textile manufacturing. In this study, we performed a comprehensive comparative transcriptome analysis to elucidate the regulatory mechanisms underlying fiber development in B. ceiba. Our findings revealed a distinct transcriptional landscape in the inner fruit epidermis, characterized by the enrichment of genes involved in hemicellulose and lignin biosynthesis. Furthermore, we identified a markedly reduced expression of genes associated with microtubule (MT) organization and orientation, which may influence the patterning of cellulose microfibril deposition and contribute to the suppression of fiber twist. These molecular signatures likely underpin the unique morphology and mechanical properties of B. ceiba fibers. Altogether, our study provides novel insights into the genetic and molecular basis of fiber development in B. ceiba, offering a foundation for future strategies aimed at improving fiber quality and expanding the industrial application of this and other natural fiber-producing species. 
651 4 |a Beijing China 
651 4 |a China 
653 |a Transcriptomes 
653 |a Thermal cycling 
653 |a Cotton 
653 |a Epidermis 
653 |a Cellulose 
653 |a Genes 
653 |a Biosynthesis 
653 |a Thermal insulation 
653 |a Mechanical properties 
653 |a Genomes 
653 |a Fruits 
653 |a Hemicellulose 
653 |a Sustainable materials 
653 |a Gene expression 
653 |a Industrial applications 
653 |a Fibers 
653 |a Ovaries 
653 |a Trees 
653 |a Plants 
653 |a Tensile strength 
653 |a Regulatory mechanisms (biology) 
653 |a Textiles 
653 |a Bombax ceiba 
653 |a Environmental 
700 1 |a Yuan, Guofang 
700 1 |a Sun, Jing 
700 1 |a Gao, Yong 
700 1 |a Tang, Lizhou 
700 1 |a Xu, Jianchu 
700 1 |a Liu, Aizhong 
700 1 |a Tian, Bin 
773 0 |t BMC Plant Biology  |g vol. 25 (2025), p. 1-15 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268447688/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268447688/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268447688/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch