Automated cup-to-disc ratio quantification via color fundus photography for chronic glaucoma screening

Guardat en:
Dades bibliogràfiques
Publicat a:BMC Medical Imaging vol. 25 (2025), p. 1-19
Autor principal: Lv, Xiaoxuan
Altres autors: Yang, Yang, Cheng, Wan, Zhao, Jiani, Chi, Wei, Yang, Weihua
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3268447863
003 UK-CbPIL
022 |a 1471-2342 
024 7 |a 10.1186/s12880-025-01981-x  |2 doi 
035 |a 3268447863 
045 2 |b d20250101  |b d20251231 
084 |a 58449  |2 nlm 
100 1 |a Lv, Xiaoxuan 
245 1 |a Automated cup-to-disc ratio quantification via color fundus photography for chronic glaucoma screening 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a PurposeGlaucoma is a leading cause of irreversible blindness, and accurate cup-to-disc ratio (CDR) measurement is essential for early detection. This study presents an enhanced deep learning–based system for automated CDR estimation and glaucoma screening.MethodsWe propose an end-to-end framework consisting of three modules: (1) optic cup and disc segmentation using an enhanced dual encoder–decoder network (E-DCoAtUNet), (2) a conditional random field (CRF) post-processing module for boundary refinement, and (3) a measurement module for vertical CDR calculation and glaucoma classification. The model was trained and evaluated on the Drishti-GS dataset and validated on the REFUGE dataset to assess generalizability.ResultsThe system achieved Dice scores of 97.6% for the optic disc and 90.8% for the optic cup, further improved by CRF refinement. Automated CDR estimation showed strong agreement with expert annotations (Pearson’s r = 0.9190, MAE = 0.0387). For glaucoma screening, the system demonstrated reliable performance across both datasets, highlighting its robustness and clinical applicability.ConclusionThe proposed E-DCoAtUNet-based system provides a fully automated, interpretable, and precise solution for glaucoma screening. By integrating advanced segmentation, boundary refinement, and accurate measurement, it ensures consistent CDR evaluation even under challenging imaging conditions, and demonstrates strong potential for real-world clinical application. 
653 |a Optic nerve 
653 |a Datasets 
653 |a Accuracy 
653 |a Deep learning 
653 |a Glaucoma 
653 |a Conditional random fields 
653 |a Segmentation 
653 |a Optimization 
653 |a Classification 
653 |a Modules 
653 |a Annotations 
653 |a Automation 
653 |a Localization 
653 |a Morphology 
653 |a Photography 
700 1 |a Yang, Yang 
700 1 |a Cheng, Wan 
700 1 |a Zhao, Jiani 
700 1 |a Chi, Wei 
700 1 |a Yang, Weihua 
773 0 |t BMC Medical Imaging  |g vol. 25 (2025), p. 1-19 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268447863/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268447863/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268447863/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch