Development and prospective evaluation of a machine learning model to predict vomiting among pediatric cancer and hematopoietic cell transplant patients

Guardado en:
Detalles Bibliográficos
Publicado en:BMC Cancer vol. 25 (2025), p. 1-9
Autor principal: Yan, Adam Paul
Otros Autores: Lin Lawrence Guo, Patel, Priya, Schechter, Tal, Arciniegas, Santiago Eduardo, Inoue, Jiro, Vettese, Emily, Jessa, Karim, Cardiff, Bren, Tomlinson, George A, L. Lee Dupuis, Sung, Lillian
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3268447952
003 UK-CbPIL
022 |a 1471-2407 
024 7 |a 10.1186/s12885-025-15137-1  |2 doi 
035 |a 3268447952 
045 2 |b d20250101  |b d20251231 
084 |a 58465  |2 nlm 
100 1 |a Yan, Adam Paul 
245 1 |a Development and prospective evaluation of a machine learning model to predict vomiting among pediatric cancer and hematopoietic cell transplant patients 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a PurposeObjectives were to develop a machine learning (ML) model based on electronic health record (EHR) data to predict the risk of vomiting within a 96-hour window after admission to the pediatric oncology and hematopoietic cell transplant (HCT) services using retrospective data and to evaluate the model prospectively in a silent trial.Patients and methodsAdmissions between 2018-06-02 to 2024-02-17 (retrospective) and 2024-05-09 to 2024-08-05 (prospective) to the oncology or HCT services were included. Data source was SEDAR, a curated and validated approach to deliver EHR data for ML. Prediction time was 08:30 the morning following admission. The outcome was any vomiting within 96 h following prediction time. We trained models using L2-regularized logistic regression, LightGBM and XGBoost. Training cohorts include the target cohort and all inpatient admissions.ResultsThere were 7,408 admissions in the retrospective phase and 340 admissions in the prospective silent trial phase. The best-performing model in the retrospective phase was the LightGBM model trained on all inpatients. The number of features in the final model was 2,859. The area-under-the-receiver-operating-characteristic curve (AUROC) was 0.730 (95% confidence interval (CI) 0.694–0.765) for the retrospective phase and 0.716 (95% CI 0.649–0.784) for the prospective silent trial phase.ConclusionsWe found that data in the EHR could be used to develop a retrospective ML model to predict vomiting among pediatric oncology and HCT inpatients. This model retained satisfactory performance in a prospective silent trial. Future plans will include deployment into clinical workflows and determining if the model improves vomiting control. 
653 |a Cancer 
653 |a Hematopoietic stem cells 
653 |a Patients 
653 |a Vomiting 
653 |a Machine learning 
653 |a Electronic health records 
653 |a Datasets 
653 |a Regression analysis 
653 |a Stem cell transplantation 
653 |a Oncology 
653 |a Pediatrics 
653 |a Electronic medical records 
653 |a Chemotherapy 
653 |a Learning algorithms 
700 1 |a Lin Lawrence Guo 
700 1 |a Patel, Priya 
700 1 |a Schechter, Tal 
700 1 |a Arciniegas, Santiago Eduardo 
700 1 |a Inoue, Jiro 
700 1 |a Vettese, Emily 
700 1 |a Jessa, Karim 
700 1 |a Cardiff, Bren 
700 1 |a Tomlinson, George A 
700 1 |a L. Lee Dupuis 
700 1 |a Sung, Lillian 
773 0 |t BMC Cancer  |g vol. 25 (2025), p. 1-9 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268447952/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268447952/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268447952/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch