Radiomics-based correlation analysis of fetal brain MRI features and children’s neurodevelopmental outcomes in monochorionic twins

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:BMC Pregnancy and Childbirth vol. 25 (2025), p. 1-11
मुख्य लेखक: Lai, Huina
अन्य लेखक: Ye, Yingnan, Chen, Yiqing, Wang, Liqin, Lin, Minhuan, Xia, Shuting, He, Zhiming, Huang, Xuan, You, Kaniok, Huang, Xuewen, Fan, Miao, Huang, Linhuan, Luo, Yanmin
प्रकाशित:
Springer Nature B.V.
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3268448198
003 UK-CbPIL
022 |a 1471-2393 
024 7 |a 10.1186/s12884-025-08214-7  |2 doi 
035 |a 3268448198 
045 2 |b d20250101  |b d20251231 
084 |a 58486  |2 nlm 
100 1 |a Lai, Huina 
245 1 |a Radiomics-based correlation analysis of fetal brain MRI features and children’s neurodevelopmental outcomes in monochorionic twins 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a ObjectiveTo characterize fetal brain MRI features in monochorionic twin pregnancies based on radiomics; and to investigate the correlation between these radiomic features and subsequent neurodevelopmental outcomes.MethodsThis retrospective cohort study analyzed 26 monochorionic twin pregnancies (36 fetus included) who underwent fetal brain MRI (Siemens Magnetom Skyra 3.0 T or Philips Ingenia 3.0 T). Neurodevelopmental assessment categorized 20 monochorionic twins into the good neurodevelopmental group and 16 into the moderate neurodevelopmental group. MRI textural features of different brain areas were quantified by composite radiomics score and individual radiomics-feature score, and the correlation between these scores and neurodevelopmental outcomes during postnatal follow-up was analyzed.ResultsQuantitative radiomic analysis revealed significantly higher radiomics score in the good neurodevelopmental group for the following regions: periventricular white matter (PWM), frontal, parietal and temporal lobes (all P < 0.05). Four specific radiomics-feature score demonstrated significant group differences in these regions: Gray Level Dependence Matrix (GLDM) in PWM, first-order statistical feature in frontal lobe, Gray Level Size Zone Matrix (GLSZM) in parietal lobe, and GLSZM in temporal lobe. For predictive modeling, we identified five high-discriminatory features representing distinct feature categories: shape features (Elongation), first-order statistical features (Kurtosis), and texture features (GLCM: Cluster Shade, GLRLM: Long Run High Gray Level Emphasis, GLSZM: Size Zone Non Uniformity). The logistic regression model with nested cross-validation incorporating these features achieved excellent predictive performance for neurodevelopmental outcomes [Mean of AUC = 0.8900 (± 0.1133)].ConclusionsRadiomics scores were higher in good neurodevelopmental fetuses, and the selected radiomics features may be helpful for predicting the neurodevelopmental outcomes of monochorionic twins. 
653 |a Radiomics 
653 |a Fetuses 
653 |a Machine learning 
653 |a Biomarkers 
653 |a Feature selection 
653 |a Pregnancy 
653 |a Medical prognosis 
653 |a Brain research 
653 |a Twins 
653 |a Injuries 
700 1 |a Ye, Yingnan 
700 1 |a Chen, Yiqing 
700 1 |a Wang, Liqin 
700 1 |a Lin, Minhuan 
700 1 |a Xia, Shuting 
700 1 |a He, Zhiming 
700 1 |a Huang, Xuan 
700 1 |a You, Kaniok 
700 1 |a Huang, Xuewen 
700 1 |a Fan, Miao 
700 1 |a Huang, Linhuan 
700 1 |a Luo, Yanmin 
773 0 |t BMC Pregnancy and Childbirth  |g vol. 25 (2025), p. 1-11 
786 0 |d ProQuest  |t Consumer Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268448198/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268448198/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268448198/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch