Scientific approach to problem solving-inspired optimization of stacking ensemble learning for enhanced civil engineering informatics

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:The Artificial Intelligence Review vol. 58, no. 12 (Dec 2025), p. 404
Yazar: Truong, Dinh-Nhat
Diğer Yazarlar: Chou, Jui-Sheng
Baskı/Yayın Bilgisi:
Springer Nature B.V.
Konular:
Online Erişim:Citation/Abstract
Full Text
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3268534025
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11356-x  |2 doi 
035 |a 3268534025 
045 2 |b d20251201  |b d20251231 
084 |a 68693  |2 nlm 
100 1 |a Truong, Dinh-Nhat  |u National Taiwan University of Science and Technology, Department of Civil and Construction Engineering, Taipei, Taiwan (GRID:grid.45907.3f) (ISNI:0000 0000 9744 5137); University of Architecture Ho Chi Minh City, Department of Civil Engineering, Ho Chi Minh City, Viet Nam (GRID:grid.444826.8) (ISNI:0000 0004 0643 0618) 
245 1 |a Scientific approach to problem solving-inspired optimization of stacking ensemble learning for enhanced civil engineering informatics 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a This study introduces the Scientific Approach to Problem Solving-inspired Optimization (SAPSO) algorithm, a novel metaheuristic specifically designed for applications in civil engineering informatics. SAPSO imitates the structured process of scientific inquiry—covering problem review, hypothesis formulation, data collection, and analysis—to systematically explore complex search spaces. This approach enables SAPSO to reliably identify global optima. The algorithm’s performance was extensively tested against eleven leading metaheuristic algorithms using the IEEE Congress on Evolutionary Computation benchmark suites from 2020 (CEC 2020) and 2022 (CEC 2022). The comparison included the Artificial Bee Colony, Cultural Algorithm, Genetic Algorithm, Differential Evolution, Artificial Gorilla Troops Optimizer, Grey Wolf Optimizer, Particle Swarm Optimization, Red Kite Optimization Algorithm, Symbiotic Organisms Search, Teaching–Learning-Based Optimization, and Whale Optimization Algorithm. Statistical analysis with the Wilcoxon rank-sum test confirmed SAPSO’s superior results across these benchmarks. Additionally, this study presents a stacked ensemble machine learning framework called the SAPSO-Weighted Features Stacking System (SAPSO-WFSS), which combines SAPSO with two predictive models: a Radial Basis Function Neural Network and Least Squares Support Vector Regression. SAPSO is used to optimize both feature weights and model hyperparameters. Experiments on five diverse civil engineering case studies show that SAPSO-WFSS provides high accuracy, with Mean Absolute Percentage Error values as low as 2.4%, outperforming traditional methods. These findings demonstrate SAPSO’s potential as a powerful tool for improving prediction reliability in infrastructure maintenance and solving complex optimization problems in civil engineering. 
653 |a Problem solving 
653 |a Behavior 
653 |a Particle swarm optimization 
653 |a Experiments 
653 |a Reliability 
653 |a Algorithms 
653 |a Quantitative analysis 
653 |a Prediction models 
653 |a Models 
653 |a Machine learning 
653 |a Chemistry 
653 |a Engineering 
653 |a Function words 
653 |a Cognition & reasoning 
653 |a Statistical analysis 
653 |a Infrastructure 
653 |a Evolutionary computation 
653 |a Civil engineering 
653 |a Social networks 
653 |a Teaching 
653 |a Genetic algorithms 
653 |a Neural networks 
653 |a Computation 
653 |a Case studies 
653 |a Primates 
653 |a Optimization 
653 |a Learning 
653 |a Cultural change 
653 |a Ensemble learning 
653 |a Optimization algorithms 
653 |a Data collection 
653 |a Swarm intelligence 
653 |a Genetics 
653 |a Heuristic methods 
653 |a Benchmarks 
653 |a Evolutionary algorithms 
653 |a Physics 
653 |a Radial basis function 
653 |a Support vector machines 
653 |a Whales & whaling 
653 |a Informatics 
700 1 |a Chou, Jui-Sheng  |u National Taiwan University of Science and Technology, Department of Civil and Construction Engineering, Taipei, Taiwan (GRID:grid.45907.3f) (ISNI:0000 0000 9744 5137) 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 12 (Dec 2025), p. 404 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268534025/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268534025/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268534025/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch