A Python interface to the Fortran-based Parallel Data Assimilation Framework: pyPDAF v1.0.2

Guardado en:
Bibliografiske detaljer
Udgivet i:Geoscientific Model Development vol. 18, no. 21 (2025), p. 8235-8253
Hovedforfatter: Chen, Yumeng
Andre forfattere: Nerger, Lars, Lawless, Amos S.
Udgivet:
Copernicus GmbH
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3268680918
003 UK-CbPIL
022 |a 1991-962X 
022 |a 1991-9603 
024 7 |a 10.5194/gmd-18-8235-2025  |2 doi 
035 |a 3268680918 
045 2 |b d20250101  |b d20251231 
084 |a 123629  |2 nlm 
100 1 |a Chen, Yumeng  |u School of Mathematical, Physical and Computational Sciences, University of Reading, Reading RG6 6ET, UK; National Centre for Earth Observation, University of Reading, Reading RG6 6ET, UK 
245 1 |a A Python interface to the Fortran-based Parallel Data Assimilation Framework: pyPDAF v1.0.2 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Data assimilation (DA) is an essential component of numerical weather and climate prediction. Efficient implementation of DA algorithms benefits both research and operational prediction. Currently, a variety of DA software programs are available. One of the notable DA libraries is the Parallel Data Assimilation Framework (PDAF) designed for ensemble data assimilation. The DA framework is widely used with complex high-dimensional climate models, and is applied for research on atmosphere, ocean, sea ice and marine ecosystem modelling, as well as operational ocean forecasting. Meanwhile, there are increasing demands for flexible and efficient DA implementations using Python due to the increasing amount of intermediate complexity models as well as machine learning based models coded in Python. To accommodate for such demands, we introduce a Python interface to PDAF, pyPDAF. pyPDAF allows for flexible DA system development while retaining the efficient implementation of the core DA algorithms in the Fortran-based PDAF. The ideal use-case of pyPDAF is a DA system where the model integration is independent from the DA program, which reads the model forecast ensemble, produces an analysis, and updates the restart files of the model, or a DA system where the model can be used in Python. With implementations of both PDAF and pyPDAF, this study demonstrates the use of pyPDAF and PDAF in a coupled data assimilation (CDA) setup in a coupled atmosphere-ocean model, the Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM). This study demonstrates that pyPDAF allows for PDAF functionalities from Python where users can utilise Python functions to handle case-specific information from observations and numerical model. The study also shows that pyPDAF can be used with high-dimensional systems with little slow-down per analysis step of only up to 13 % for the localized ensemble Kalman filter LETKF in the example used in this study. The study also shows that, compared to PDAF, the overhead of pyPDAF is comparatively smaller when computationally intensive components dominate the DA system. This can be the case for systems with high-dimensional state vectors. 
653 |a Ocean models 
653 |a Ocean-atmosphere interaction 
653 |a Biogeochemistry 
653 |a Sea ice 
653 |a Atmospheric models 
653 |a Atmosphere 
653 |a Marine ecosystems 
653 |a Data assimilation 
653 |a Machine learning 
653 |a Python 
653 |a Localization 
653 |a Ecosystem models 
653 |a Kalman filters 
653 |a System theory 
653 |a Numerical models 
653 |a State vectors 
653 |a Algorithms 
653 |a Vectors 
653 |a Software 
653 |a Parameter estimation 
653 |a FORTRAN 
653 |a Ocean-atmosphere system 
653 |a Ensemble forecasting 
653 |a Oceans 
653 |a Climate prediction 
653 |a Climate models 
653 |a Mathematical models 
653 |a Data collection 
653 |a Design 
653 |a Atmospheric research 
653 |a Complexity 
653 |a Data exchange 
653 |a Environmental 
700 1 |a Nerger, Lars  |u Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung (AWI), 27570 Bremerhaven, Germany 
700 1 |a Lawless, Amos S.  |u School of Mathematical, Physical and Computational Sciences, University of Reading, Reading RG6 6ET, UK; National Centre for Earth Observation, University of Reading, Reading RG6 6ET, UK 
773 0 |t Geoscientific Model Development  |g vol. 18, no. 21 (2025), p. 8235-8253 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268680918/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268680918/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268680918/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch