Editorial: Novel insights into the modulation of protein function by lipids and membrane organization

Guardado en:
Detalles Bibliográficos
Publicado en:Frontiers in Cell and Developmental Biology vol. 13 (Apr 2025), p. 1607512-1607516
Autor principal: Zakany, Florina
Otros Autores: Török, Zsolt, Kovacs, Tamas
Publicado:
Frontiers Media SA
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3268827231
003 UK-CbPIL
022 |a 2296-634X 
024 7 |a 10.3389/fcell.2025.1607512  |2 doi 
035 |a 3268827231 
045 2 |b d20250401  |b d20250430 
100 1 |a Zakany, Florina  |u Department of Biophysics and Cell Biology, Hungary 
245 1 |a Editorial: Novel insights into the modulation of protein function by lipids and membrane organization 
260 |b Frontiers Media SA  |c Apr 2025 
513 |a Editorial 
520 3 |a Editorial on the Research Topic Novel insights into the modulation of protein function by lipids and membrane organization Although the plasma membrane was originally thought to solely represent a passive diffusion barrier separating the intracellular and extracellular spaces, a growing body of evidence supports the active contribution of lipids and membrane organization to regulating the structure and function of transmembrane proteins. Furthermore, the tendency of biological membranes to segregate laterally into dynamic nano- and microdomains such as cholesterol-enriched lipid rafts and ceramide platforms, and their changes in response to altered lipid composition, add a further level of complexity to the active modulatory role of lipids in the functional regulation of proteins. After summarizing related literature cryo-EM data, the authors introduced a simplified computational model of the endoplasmic reticulum-localized sphingolipid flux, and analyzed the energetic contribution of single residues to ceramide binding by calculating the docking score and the predicted binding free energy for mutant SPT-ORMDL complexes, which, while not being validated experimentally in the study, are in agreement with recently published experimental data. Mechanosensitive ion channels, which play a substantial role in endothelial mechanotransduction and thus blood pressure regulation, are activated by mechanical forces, such as shear stress, a frictional force generated by the blood flow and membrane tension generated by stretch (Beverley et al., 2025) and their endothelial stiffening-induced functional alterations may contribute to cardiovascular disease and aging (Aguilar et al., 2022). 
653 |a Membranes 
653 |a Endoplasmic reticulum 
653 |a Lipid rafts 
653 |a Blood flow 
653 |a Writing 
653 |a Lipid composition 
653 |a Ceramide 
653 |a Cardiovascular diseases 
653 |a Blood pressure 
653 |a Cholesterol 
653 |a Cardiovascular disease 
653 |a Free energy 
653 |a Ion channels 
653 |a Measurement techniques 
653 |a Ligands 
653 |a Lipids 
653 |a Structure-function relationships 
653 |a Pathogenesis 
653 |a Mechanotransduction 
653 |a Editing 
653 |a Proteins 
700 1 |a Török, Zsolt  |u Laboratory of Molecular Stress Biology, Hungary 
700 1 |a Kovacs, Tamas  |u Department of Biophysics and Cell Biology, Hungary 
773 0 |t Frontiers in Cell and Developmental Biology  |g vol. 13 (Apr 2025), p. 1607512-1607516 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268827231/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268827231/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268827231/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch