Thermomechanical biorefining of Pinus radiata biomass to produce biochemicals using reactive extrusion

Guardado en:
Detalles Bibliográficos
Publicado en:Bioresources and Bioprocessing vol. 12, no. 1 (Dec 2025), p. 131
Autor principal: Theobald, Beatrix
Otros Autores: Tay, Aaron, Ranganathan, Sumanth, Tanjay, Queenie, Patel, Sunita, van Leeuwen, Rebecca, Gaugler, Marc
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3268962288
003 UK-CbPIL
022 |a 2197-4365 
024 7 |a 10.1186/s40643-025-00971-9  |2 doi 
035 |a 3268962288 
045 2 |b d20251201  |b d20251231 
084 |a 242440  |2 nlm 
100 1 |a Theobald, Beatrix  |u Bioeconomy Science Institute, Scion Group, Rotorua, New Zealand (ISNI:0000 0005 2810 7616) 
245 1 |a Thermomechanical biorefining of <i>Pinus radiata</i> biomass to produce biochemicals using reactive extrusion 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Currently, ca. 30 million m3 of Pinus radiata are harvested annually in New Zealand to produce timber, pulp and paper, with by-products such as bark and sawdust generated during processing. The most common use for sawdust is as a solid fuel for process heat. However, it is a feedstock that can be processed into platform biochemicals. Although conversion processes focusing on biochemical production from wood are scarce, they are becoming more commercially established. Here, reactive extrusion was explored as a continuous, fast method to depolymerise sawdust into soluble biochemicals with residence times of less than two minutes. This is substantially shorter than other biotechnology routes or conventional batch processing and highlights the potential for integration of reactive extrusion into biorefinery operations. While conventional wood extrusion focused on the solid fraction, this work extensively investigated the liquid biochemical profile. The effects of temperature, moisture content, screw speed, and screw design on the biochemical yield from sawdust were studied. The results indicated that kneading elements in the screw design were key to achieving good processing of the sawdust. A high moisture content of 50% (by weight) was instrumental in the isolation of biochemicals. Moreover, the screw speed had little to no effect on the biochemical composition obtained from the reactive extrusion process. Finally, a maximum of 6.5–7.5% of biochemicals were recovered from sawdust in the liquid phase when processed between 325 °C and 375&#xa0;°C. The biochemical analyses of the liquor showed a high amount of acetic acid (up to 7913&#xa0;mg/L) and methanol (up to 2277&#xa0;mg/L). Furthermore, the furanic content increased with an increase in temperature between 275 °C and 375&#xa0;°C, while an inverse trend was observed for aromatic phenols. The analyses also revealed that lignin and hemicellulose were depolymerised to produce oligomeric and monomeric breakdown products, while cellulose was untouched. This study successfully demonstrated the successful use of a twin-screw reactive extruder to continuously produce a biochemical-rich liquor from sawdust. 
610 4 |a Mettler-Toledo Inc International Energy Agency 
653 |a Lignocellulose 
653 |a Liquid phases 
653 |a Wood 
653 |a Extrusion rate 
653 |a Solid fuels 
653 |a Acetic acid 
653 |a Biotechnology 
653 |a Sawdust 
653 |a Phenols 
653 |a Biorefineries 
653 |a Biomass 
653 |a Moisture content 
653 |a Liquor 
653 |a Hemicellulose 
653 |a Cellulose 
653 |a Water content 
653 |a Batch processing 
653 |a Nitrogen 
653 |a Raw materials 
653 |a Refining 
653 |a Biopolymers 
653 |a Extrusion 
653 |a Temperature 
653 |a Continuous extrusion 
653 |a Solvents 
653 |a Batch processes 
653 |a Renewable resources 
653 |a Biochemistry 
653 |a Temperature effects 
653 |a Alternative energy sources 
653 |a Process heat 
653 |a Pinus radiata 
700 1 |a Tay, Aaron  |u Bioeconomy Science Institute, Scion Group, Rotorua, New Zealand (ISNI:0000 0005 2810 7616) 
700 1 |a Ranganathan, Sumanth  |u Bioeconomy Science Institute, Scion Group, Rotorua, New Zealand (ISNI:0000 0005 2810 7616) 
700 1 |a Tanjay, Queenie  |u Bioeconomy Science Institute, Scion Group, Rotorua, New Zealand (ISNI:0000 0005 2810 7616) 
700 1 |a Patel, Sunita  |u Bioeconomy Science Institute, Scion Group, Rotorua, New Zealand (ISNI:0000 0005 2810 7616) 
700 1 |a van Leeuwen, Rebecca  |u Bioeconomy Science Institute, Scion Group, Rotorua, New Zealand (ISNI:0000 0005 2810 7616) 
700 1 |a Gaugler, Marc  |u Bioeconomy Science Institute, Scion Group, Rotorua, New Zealand (ISNI:0000 0005 2810 7616) 
773 0 |t Bioresources and Bioprocessing  |g vol. 12, no. 1 (Dec 2025), p. 131 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3268962288/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3268962288/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3268962288/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch