Estimation of the state and parameters in ice sheet model using an ensemble Kalman filter and Observing System Simulation Experiments

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:The Cryosphere vol. 19, no. 11 (2025), p. 5423-5445
Päätekijä: Choi, Youngmin
Muut tekijät: Petty, Alek, Felikson, Denis, Poterjoy, Jonathan
Julkaistu:
Copernicus GmbH
Aiheet:
Linkit:Citation/Abstract
Full Text
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3269047605
003 UK-CbPIL
022 |a 1994-0424 
022 |a 1994-0416 
024 7 |a 10.5194/tc-19-5423-2025  |2 doi 
035 |a 3269047605 
045 2 |b d20250101  |b d20251231 
084 |a 123641  |2 nlm 
100 1 |a Choi, Youngmin  |u Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA 
245 1 |a Estimation of the state and parameters in ice sheet model using an ensemble Kalman filter and Observing System Simulation Experiments 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Better constraining the current and future evolution of Earth's ice sheets using physical process models is essential for improving our understanding of future sea level rise. Data assimilation is a method that combines models with observations to improve current estimates of model states and parameters, leveraging the information and uncertainties inherent in both models and observations. In this study, we present an ensemble Kalman filter-based data assimilation (DA) framework for ice sheet modeling, aiming to better constrain the model state and key parameters from a single semi-idealized glacier domain. Through a synthetic twin experiment, we show that the ensemble DA method effectively recovers basal conditions and the model state after a few assimilation cycles. Assimilating more observations improves the accuracy of these estimates, thereby improving the model's projection capabilities. We also utilize Observing System Simulation Experiments (OSSEs) to explore the capabilities of the ensemble DA framework to assimilate different types of data and to quantify their impact on the model state and parameter estimation. In our experiments, we assimilate land ice elevation data simulated based on The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) products. These experiments are crucial for identifying observations with the largest impact on the model state and parameter estimates. Our assimilation results are highly sensitive to design choices for observation networks, such as spatial resolutions and prescribed uncertainties. Notably, the marginal improvements or increases in RMSE observed at coarser resolutions suggest that, beyond a certain spatial threshold, additional observations do not improve and may even degrade long-term estimates of the model state and parameters. The ensemble DA framework, capable of assimilating multi-temporal observations, shows promising results for real glacier applications through a continental ice sheet model. Additionally, this framework provides a flexible infrastructure for performing OSSEs aimed at testing various observational settings for future missions, as it requires less numerical model re-development than variational methods. 
653 |a Parameters 
653 |a Glaciers 
653 |a Models 
653 |a Estimates 
653 |a Parameter sensitivity 
653 |a Topography 
653 |a Variational methods 
653 |a Data assimilation 
653 |a Sea level rise 
653 |a Sea level changes 
653 |a Time series 
653 |a Uncertainty 
653 |a Sheet modelling 
653 |a Kalman filters 
653 |a Friction 
653 |a Glaciation 
653 |a Simulation 
653 |a Ice 
653 |a Parameter estimation 
653 |a Numerical models 
653 |a Ice sheets 
653 |a Experiments 
653 |a Mathematical models 
653 |a Land ice 
653 |a Data collection 
653 |a Variables 
653 |a Ice sheet models 
653 |a Environmental 
700 1 |a Petty, Alek  |u Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA 
700 1 |a Felikson, Denis  |u NASA Goddard Space Flight Center, Greenbelt, MD, USA 
700 1 |a Poterjoy, Jonathan  |u Department of Atmospheric & Oceanic Science, University of Maryland, College Park, MD, USA 
773 0 |t The Cryosphere  |g vol. 19, no. 11 (2025), p. 5423-5445 
786 0 |d ProQuest  |t Continental Europe Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3269047605/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3269047605/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3269047605/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch