Discriminator‐Guided Generative Adversarial Networks for Urban Flood Prediction

Salvato in:
Dettagli Bibliografici
Pubblicato in:Water Resources Research vol. 61, no. 11 (Nov 1, 2025)
Autore principale: Li, Zhufeng
Altri autori: Fu, Zeyu, Li, Qian, Fu, Guangtao
Pubblicazione:
John Wiley & Sons, Inc.
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3269471456
003 UK-CbPIL
022 |a 0043-1397 
022 |a 1944-7973 
024 7 |a 10.1029/2025WR040510  |2 doi 
035 |a 3269471456 
045 0 |b d20251101 
084 |a 107315  |2 nlm 
100 1 |a Li, Zhufeng  |u Centre for Water Systems, University of Exeter, Exeter, UK 
245 1 |a Discriminator‐Guided Generative Adversarial Networks for Urban Flood Prediction 
260 |b John Wiley & Sons, Inc.  |c Nov 1, 2025 
513 |a Journal Article 
520 3 |a Flood modeling is crucial in flood management as it can provide early warnings and support informed decision‐making on mitigation and adaptation strategies. However, it remains challenging to provide accurate flood predictions in real time using hydrodynamic flood models due to high computational demands. This study presents a new discriminator‐guided Generative Adversarial Neural Networks (GANs) model for two‐dimensional, high‐resolution urban flood prediction. Compared with the traditional GANs, the role of the discriminator is re‐defined by modifying its structure and loss function, enabling pixel‐wise discrimination based on errors, thereby better meeting the requirements of high‐resolution flood prediction. The proposed model is tested on the case study of Exeter, which covers an area of 27 km2 with a spatial resolution of 2 m, compared with the baseline models of Pix2Pix and U‐Net. The proposed model can accurately predict the water depths across historical and design rainfall events, achieving an average root mean square error of 0.044 m and Critical Success Index of 0.754, demonstrating the generalization capability on unseen rainfall events. The proposed model significantly improves computational efficiency and offers a viable solution for spatiotemporal flood prediction in real‐time, providing informed decision‐making for urban flood management. 
653 |a Dams 
653 |a Flood management 
653 |a Deep learning 
653 |a Floods 
653 |a Discriminators 
653 |a Rainfall 
653 |a Water depth 
653 |a Neural networks 
653 |a Generative adversarial networks 
653 |a Computer applications 
653 |a Spatial discrimination 
653 |a Flood control 
653 |a Design rainfall 
653 |a Flood forecasting 
653 |a Precipitation 
653 |a Predictions 
653 |a Spatial resolution 
653 |a Structure-function relationships 
653 |a Decision making 
653 |a Flood predictions 
653 |a Flood models 
653 |a Environmental 
700 1 |a Fu, Zeyu  |u Department of Computer Science, University of Exeter, Exeter, UK 
700 1 |a Li, Qian  |u Centre for Water Systems, University of Exeter, Exeter, UK 
700 1 |a Fu, Guangtao  |u Centre for Water Systems, University of Exeter, Exeter, UK 
773 0 |t Water Resources Research  |g vol. 61, no. 11 (Nov 1, 2025) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3269471456/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3269471456/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3269471456/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch