Children’s drug research and development incentives and market pricing optimization based on medical imaging

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 38944-38956
Autor principal: Mu, Xiaoyan
Otros Autores: Wu, Lin
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3269528079
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-22867-6  |2 doi 
035 |a 3269528079 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Mu, Xiaoyan  |u College of Continuing Education, China Pharmaceutical University, 210000, Nanjing, Jiangsu, China (ROR: https://ror.org/01sfm2718) (GRID: grid.254147.1) (ISNI: 0000 0000 9776 7793) 
245 1 |a Children’s drug research and development incentives and market pricing optimization based on medical imaging 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Due to differences in physiological characteristics and drug metabolism between children and adults, drug efficacy evaluation and safety monitoring in pediatric drug development present significant challenges. This paper proposes a data-driven incentive mechanism for pediatric drug development based on medical imaging data. This approach optimizes drug market pricing through precise imaging data, promoting accessibility and R&D efficiency for pediatric drugs. This study first collects multi-source computed tomography (CT), magnetic resonance imaging (MRI), and X-ray data, focusing on images of common pediatric diseases. After data preprocessing, a convolutional neural network (CNN) is used for feature extraction to extract key image information. Image difference methods and a U-Net image segmentation network are then used to evaluate drug efficacy and safety, quantify efficacy changes, and analyze side effects. Next, a drug efficacy-safety evaluation model is developed, and game theory is employed to design a R&D incentive mechanism. Monte Carlo simulation is combined with risk assessment to comprehensively consider factors such as cost, R&D investment, and market demand during the pricing optimization phase. A dynamic pricing strategy is implemented to ensure both economic benefits and social accessibility of the drug. Experiments have shown that the drug has a good development effect, with an average tumor volume reduction of 32.7% (95% CI: 28.4%-36.9%). The drug’s impact on organ volume is within ± 2 cm³, and the market pricing strategy selects a relatively optimal price point. 
653 |a Side effects 
653 |a Accuracy 
653 |a Magnetic resonance imaging 
653 |a Deep learning 
653 |a Optimization 
653 |a Safety 
653 |a Drug metabolism 
653 |a Drug development 
653 |a Pharmaceutical industry 
653 |a Data analysis 
653 |a Image processing 
653 |a Metabolism 
653 |a Risk assessment 
653 |a Medical imaging 
653 |a Research & development--R&D 
653 |a Efficiency 
653 |a Machine learning 
653 |a Quality standards 
653 |a Drug efficacy 
653 |a Artificial intelligence 
653 |a Game theory 
653 |a Computed tomography 
653 |a Monte Carlo simulation 
653 |a Data collection 
653 |a Information processing 
653 |a Algorithms 
653 |a Tumors 
653 |a Bone diseases 
653 |a Pediatrics 
653 |a Neural networks 
653 |a Social 
700 1 |a Wu, Lin  |u School of International Pharmaceutical Business, China Pharmaceutical University, 211198, Nanjing, Jiangsu, China (ROR: https://ror.org/01sfm2718) (GRID: grid.254147.1) (ISNI: 0000 0000 9776 7793) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 38944-38956 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3269528079/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3269528079/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3269528079/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch