A Sub‐Optimum Algorithm for Turning on/Off Co‐Channel Access Points in Ultra‐Dense Networks

Guardado en:
Bibliografiske detaljer
Udgivet i:Engineering Reports vol. 7, no. 11 (Nov 1, 2025)
Hovedforfatter: Shirvani Moghaddam, Shahriar
Andre forfattere: Shirvani Moghaddam, Kiaksar, Ashoor, Ebrahim
Udgivet:
John Wiley & Sons, Inc.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3269845374
003 UK-CbPIL
022 |a 2577-8196 
024 7 |a 10.1002/eng2.70483  |2 doi 
035 |a 3269845374 
045 0 |b d20251101 
100 1 |a Shirvani Moghaddam, Shahriar  |u Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran 
245 1 |a A Sub‐Optimum Algorithm for Turning on/Off Co‐Channel Access Points in Ultra‐Dense Networks 
260 |b John Wiley & Sons, Inc.  |c Nov 1, 2025 
513 |a Journal Article 
520 3 |a ABSTRACT This paper proposes a sub‐optimal Kuhn–Munkres‐based resource assignment algorithm to maximize both the number of connected links and the mean throughput per link in ultra‐dense networks (UDNs) consisting of densely distributed co‐channel access points (APs) and user equipment (UEs). The proposed seven‐step algorithm first assigns UEs to APs that provide higher data rates while accounting for the interference of all APs. Next, only the interference from the selected APs is considered to identify UEs that meet the minimum throughput threshold level. In subsequent steps, considering both the interference of previously assigned APs and the remaining candidate APs, additional UEs are connected. Simulation results in MATLAB for a 250m×250m$$ 250\ \mathrm{m}\times 250\ \mathrm{m} $$ service area with 250$$ 250 $$ randomly distributed APs and varying numbers of UEs (25–250$$ 250 $$) demonstrate that the proposed algorithm achieves higher connectivity and total throughput with significantly reduced processing time compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Gray Wolf Optimization (GWO). Specifically, as the number of UEs increases from 10%$$ 10\% $$ to 100%$$ 100\% $$ of the number of APs, the proposed algorithm improves the number of connected UEs by 10%−48%$$ 10\%-48\% $$, 47%−96%$$ 47\%-96\% $$, 57%−109%$$ 57\%-109\% $$, and 22%−58%$$ 22\%-58\% $$, and the total throughput by 20%−52%$$ 20\%-52\% $$, 44%−86%$$ 44\%-86\% $$, 50%−105%$$ 50\%-105\% $$, and 22%−69%$$ 22\%-69\% $$, respectively, over the four benchmark algorithms. Moreover, owing to its lower computational complexity, the proposed method achieves at least 99%$$ 99\% $$ reduction in processing time. 
653 |a Search algorithms 
653 |a Particle swarm optimization 
653 |a Service areas 
653 |a Algorithms 
653 |a Genetic algorithms 
653 |a Assignment problem 
653 |a Optimization 
653 |a Efficiency 
700 1 |a Shirvani Moghaddam, Kiaksar  |u School of Computer Engineering, Iran University of Science and Technology (IUST), Tehran, Iran 
700 1 |a Ashoor, Ebrahim  |u Digital Communications Signal Processing (DCSP) Research Laboratory, Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran 
773 0 |t Engineering Reports  |g vol. 7, no. 11 (Nov 1, 2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3269845374/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3269845374/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3269845374/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch