Developing ACT-R Model for Key Concept Recall in a Multilayered K-12 Educational Game

Guardado en:
書目詳細資料
發表在:European Conference on Games Based Learning vol. 2 (Oct 2025), p. 1079-1084
主要作者: Farzan, Farshid
其他作者: Bikdeli, Paria
出版:
Academic Conferences International Limited
主題:
在線閱讀:Citation/Abstract
Full Text
Full Text - PDF
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

MARC

LEADER 00000nab a2200000uu 4500
001 3269933842
003 UK-CbPIL
022 |a 2049-0992 
022 |a 2049-100X 
035 |a 3269933842 
045 2 |b d20251001  |b d20251031 
084 |a 142234  |2 nlm 
100 1 |a Farzan, Farshid  |u Cognitive Group, Psychology Department, University of Memphis, USA 
245 1 |a Developing ACT-R Model for Key Concept Recall in a Multilayered K-12 Educational Game 
260 |b Academic Conferences International Limited  |c Oct 2025 
513 |a Conference Proceedings 
520 3 |a Educational games, while widely used to enhance engagement and motivation, often struggle to balance instructional content with compelling gameplay. Although integrating learning and gameplay within a unified structure is theoretically effective, it presents practical challenges in achieving both high engagement and instructional impact. To address this, the current study introduces an intertwined Multilayered Educational Game - Computer-based Framework (iMEG C-Framework) and an ACT-R cognitive model to simulate the recall process. These models will be evaluated across three instructional conditions (Traditional Learning, Classic Educational Game, and iMEG) targeting K-12 students in both shortand long-term memory tasks. Cognitive modeling is particularly valuable in K-12 contexts where large-scale studies are often difficult. The iMEG framework separates game mechanics, instructional content, and feedback to create a more adaptive and organized learning experience. ACT-R modeling supports analysis of how students encode, store, and retrieve key concepts, enabling real-time adaptive feedback and instructional refinement. A within-subjects experiment will be conducted with 39 seventh-grade students across three counterbalanced conditions, each involving a 75-minute session on board game design, followed by retention assessments one and seven days later. By combining experimental data with ACT-R modeling, this study explores predictive capabilities and the impact of different game-based learning structures on student trajectories, contributing to the design of motivation-driven learning environments in K-12 education. 
653 |a Recall 
653 |a Memory tasks 
653 |a Students 
653 |a Design of experiments 
653 |a Games 
653 |a Learning 
653 |a Memory 
653 |a Educational objectives 
653 |a Feedback 
653 |a Modelling 
653 |a Education 
653 |a Multiple choice 
653 |a Retention 
653 |a Real time 
653 |a Mechanics 
653 |a Cognitive tasks 
700 1 |a Bikdeli, Paria  |u Educational Technology, Islamic Azad University, Iran 
773 0 |t European Conference on Games Based Learning  |g vol. 2 (Oct 2025), p. 1079-1084 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3269933842/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3269933842/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3269933842/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch