AI-Driven and Data-Intensive Auditing: Enhancing Sustainability and Intelligent Assurance

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Accounting, Finance and Auditing Studies vol. 11, no. 1 (2025), p. 61-72
Autor principal: Senturk, Ozden
Publicado:
Yalova University, Faculty of Economics and Administrative Sciences
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3269934826
003 UK-CbPIL
022 |a 2149-0996 
024 7 |a 10.56578/jafas110105  |2 doi 
035 |a 3269934826 
045 2 |b d20250101  |b d20250331 
084 |a 272331  |2 nlm 
100 1 |a Senturk, Ozden  |u Department of Economics, Institute of Social Sciences, Istanbul University, 34000 Istanbul, Turkey · Correspondence: Ozden Senturk (ozden.senturk@ogr.iu.edu.tr) 
245 1 |a AI-Driven and Data-Intensive Auditing: Enhancing Sustainability and Intelligent Assurance 
260 |b Yalova University, Faculty of Economics and Administrative Sciences  |c 2025 
513 |a Journal Article 
520 3 |a The integration of artificial intelligence (AI) and big data analytics has revolutionized audit practices, offering unprecedented advancements in efficiency, transparency, and sustainability. This study critically examines the role of AI-powered auditing in risk detection, anomaly identification, and the development of sustainable audit frameworks. Through an extensive literature review, the adoption of machine learning (ML), natural language processing (NLP), and continuous auditing methodologies is explored, highlighting their impact on audit quality and assurance. It is demonstrated that AI-driven auditing significantly enhances error detection and risk assessment while expediting audit procedures and improving overall accuracy. However, critical challenges remain, including data security risks, algorithmic opacity, and ethical concerns related to decision-making autonomy. Addressing these issues necessitates the establishment of robust governance mechanisms, increased algorithmic transparency, and the implementation of continuous professional training programs to ensure auditors' proficiency in AI-based systems. Furthermore, AI-driven automation enables real-time monitoring and predictive analytics, fostering a proactive approach to auditing that mitigates financial and operational risks. By leveraging AI and data-driven methodologies, audit frameworks can be rendered more adaptive, resilient, and aligned with the evolving digital economy. These findings underscore the necessity for organizations to integrate AI-driven auditing as a strategic imperative while ensuring regulatory compliance and ethical oversight. 
610 4 |a OpenAI 
653 |a Big Data 
653 |a Machine learning 
653 |a Accuracy 
653 |a Datasets 
653 |a Artificial intelligence 
653 |a Auditing 
653 |a Audits 
653 |a Fraud prevention 
653 |a Decision making 
653 |a Neural networks 
653 |a Sustainability 
653 |a Transparency 
653 |a Financial statement analysis 
653 |a Data analysis 
653 |a Data collection 
653 |a Natural language processing 
653 |a Literature reviews 
653 |a Algorithms 
653 |a Ethics 
653 |a Risk assessment 
653 |a Accountability 
653 |a Digital economy 
653 |a Compliance 
773 0 |t Journal of Accounting, Finance and Auditing Studies  |g vol. 11, no. 1 (2025), p. 61-72 
786 0 |d ProQuest  |t Accounting, Tax & Banking Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3269934826/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3269934826/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3269934826/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch