Hierarchical symmetric GAN for Thangka image generation
Guardado en:
| Publicado en: | Heritage Science vol. 13, no. 1 (Dec 2025), p. 568 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , |
| Publicado: |
Springer Nature B.V.
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Text-to-Thangka generation requires preserving both semantic accuracy and textural details. Current methods struggle with fine-grained feature extraction, multi-level feature integration, and discriminator overfitting due to limited Thangka data. We present HST-GAN, a novel framework combining parallel hybrid attention with differentiable symmetric augmentation. The architecture features a Parallel Spatial-Channel Attention module (PSCA) for precise localization of deity facial features and ritual object textures, along with a Hierarchical Feature Fusion Network (HLFN) for multi-scale alignment. The framework’s Differentiable Symmetric Augmentation (DiffAugment) dynamically adjusts discriminator inputs to prevent overfitting while improving generalization. On the T2IThangka dataset, HST-GAN achieves an Inception Score of 2.08 and reduces Fréchet Inception Distance to 87.91, demonstrating superior performance over baselines on the Oxford-102 benchmark. |
|---|---|
| ISSN: | 2050-7445 |
| DOI: | 10.1038/s40494-025-02100-3 |
| Fuente: | Materials Science Database |