Domain-Specific NER for Fluorinated Materials: A Hybrid Approach with Adversarial Training and Dynamic Contextual Embeddings

Guardat en:
Dades bibliogràfiques
Publicat a:Computers, Materials, & Continua vol. 85, no. 3 (2025), p. 4645-4666
Autor principal: Lan, Jiming
Altres autors: Fu, Hongwei, Wu, Yadong, Liu, Yaxian, Dong, Jianhua, Liu, Wei, Chen, Huaqiang
Publicat:
Tech Science Press
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3270083981
003 UK-CbPIL
022 |a 1546-2218 
022 |a 1546-2226 
024 7 |a 10.32604/cmc.2025.067289  |2 doi 
035 |a 3270083981 
045 2 |b d20250101  |b d20251231 
100 1 |a Lan, Jiming  |u School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, 644005, China 
245 1 |a Domain-Specific NER for Fluorinated Materials: A Hybrid Approach with Adversarial Training and Dynamic Contextual Embeddings 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a In the research and production of fluorinated materials, large volumes of unstructured textual data are generated, characterized by high heterogeneity and fragmentation. These issues hinder systematic knowledge integration and efficient utilization. Constructing a knowledge graph for fluorinated materials processing is essential for enabling structured knowledge management and intelligent applications. Among its core components, Named Entity Recognition (NER) plays an essential role, as its accuracy directly impacts relation extraction and semantic modeling, which ultimately affects the knowledge graph construction for fluorinated materials. However, NER in this domain faces challenges such as fuzzy entity boundaries, inconsistent terminology, and a lack of high-quality annotated corpora. To address these problems, (i) We first construct a domain-specific NER dataset by combining manual annotation with an improved Easy Data Augmentation (EDA) strategy; (ii) Secondly, we propose a novel model, RRC-ADV, which integrates RoBERTa-wwm for dynamic contextual word representation, adversarial training to improve robustness against boundary ambiguity, and a Residual BiLSTM (ResBiLSTM) to enhance sequential feature modeling. Further, a Conditional Random Field (CRF) layer is incorporated for globally optimized label prediction. Experimental results demonstrate that RRC-ADV achieves an average F1 score of 89.23% on the self-constructed dataset, significantly outperforming baseline models. The model exhibits strong robustness and adaptability within the domain of fluorinated materials. Our work enhances the accuracy of NER in the fluorinated materials processing domain and paves the way for downstream tasks such as relation extraction in knowledge graph construction. 
653 |a Accuracy 
653 |a Datasets 
653 |a Data augmentation 
653 |a Conditional random fields 
653 |a Modelling 
653 |a Knowledge management 
653 |a Materials processing 
653 |a Unstructured data 
653 |a Annotations 
653 |a Robustness (mathematics) 
653 |a Knowledge representation 
653 |a Fluorination 
653 |a Heterogeneity 
653 |a Technological change 
653 |a Deep learning 
653 |a Patents 
653 |a Research & development--R&D 
653 |a Big Data 
653 |a Machine learning 
653 |a Terminology 
653 |a Graphs 
653 |a Neural networks 
653 |a Engineering 
653 |a Natural language processing 
653 |a Semantics 
700 1 |a Fu, Hongwei  |u School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, 644005, China 
700 1 |a Wu, Yadong  |u School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, 644005, China, Sichuan Engineering Research Center for Big Data Visual Analytics, Zigong, 644005, China 
700 1 |a Liu, Yaxian  |u School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, 644005, China, Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Sichuan University of Science and Engineering, Zigong, 644005, China 
700 1 |a Dong, Jianhua  |u School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, 644005, China, Sichuan Engineering Research Center for Big Data Visual Analytics, Zigong, 644005, China 
700 1 |a Liu, Wei  |u School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, 644005, China, Sichuan Engineering Research Center for Big Data Visual Analytics, Zigong, 644005, China 
700 1 |a Chen, Huaqiang  |u School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, 644005, China, Sichuan Engineering Research Center for Big Data Visual Analytics, Zigong, 644005, China 
773 0 |t Computers, Materials, & Continua  |g vol. 85, no. 3 (2025), p. 4645-4666 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270083981/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270083981/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch