LOEV-APO-MLP: Latin Hypercube Opposition-Based Elite Variation Artificial Protozoa Optimizer for Multilayer Perceptron Training

Guardado en:
Detalles Bibliográficos
Publicado en:Computers, Materials, & Continua vol. 85, no. 3 (2025), p. 5509-5531
Autor principal: Ye, Zhiwei
Otros Autores: Song, Dingfeng, Xie, Haitao, Zhang, Jixin, Zhou, Wen, Mengya Lei, Zheng, Xiao, Sun, Jie, Zhou, Jing, Li, Mengxuan
Publicado:
Tech Science Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3270084082
003 UK-CbPIL
022 |a 1546-2218 
022 |a 1546-2226 
024 7 |a 10.32604/cmc.2025.067342  |2 doi 
035 |a 3270084082 
045 2 |b d20250101  |b d20251231 
100 1 |a Ye, Zhiwei  |u School of Computer Science, Hubei University of Technology, Wuhan, 430068, China, Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network, Wuhan, 430068, China, Hubei Provincial Engineering Technology Research Centre, Wuhan, 430068, China 
245 1 |a LOEV-APO-MLP: Latin Hypercube Opposition-Based Elite Variation Artificial Protozoa Optimizer for Multilayer Perceptron Training 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a The Multilayer Perceptron (MLP) is a fundamental neural network model widely applied in various domains, particularly for lightweight image classification, speech recognition, and natural language processing tasks. Despite its widespread success, training MLPs often encounter significant challenges, including susceptibility to local optima, slow convergence rates, and high sensitivity to initial weight configurations. To address these issues, this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer (LOEV-APO), which enhances both global exploration and local exploitation simultaneously. LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling (LHS) with Opposition-Based Learning (OBL), thus improving the diversity and coverage of the initial population. Moreover, an Elite Protozoa Variation Strategy (EPVS) is incorporated, which applies differential mutation operations to elite candidates, accelerating convergence and strengthening local search capabilities around high-quality solutions. Extensive experiments are conducted on six classification tasks and four function approximation tasks, covering a wide range of problem complexities and demonstrating superior generalization performance. The results demonstrate that LOEV-APO consistently outperforms nine state-of-the-art metaheuristic algorithms and two gradient-based methods in terms of convergence speed, solution accuracy, and robustness. These findings suggest that LOEV-APO serves as a promising optimization tool for MLP training and provides a viable alternative to traditional gradient-based methods. 
653 |a Image classification 
653 |a Protozoa 
653 |a Hypercubes 
653 |a Convergence 
653 |a Neural networks 
653 |a Natural language processing 
653 |a Multilayer perceptrons 
653 |a Task complexity 
653 |a Heuristic methods 
653 |a Speech recognition 
653 |a Latin hypercube sampling 
653 |a Design optimization 
653 |a Datasets 
653 |a Exploitation 
653 |a Voice recognition 
653 |a Support vector machines 
653 |a Classification 
653 |a Approximation 
653 |a Latin language 
653 |a Foraging behavior 
653 |a Optimization algorithms 
700 1 |a Song, Dingfeng  |u School of Computer Science, Hubei University of Technology, Wuhan, 430068, China 
700 1 |a Xie, Haitao  |u School of Computer Science, Hubei University of Technology, Wuhan, 430068, China, Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network, Wuhan, 430068, China, Hubei Provincial Engineering Technology Research Centre, Wuhan, 430068, China 
700 1 |a Zhang, Jixin  |u School of Computer Science, Hubei University of Technology, Wuhan, 430068, China, Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network, Wuhan, 430068, China 
700 1 |a Zhou, Wen  |u School of Computer Science, Hubei University of Technology, Wuhan, 430068, China, Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network, Wuhan, 430068, China 
700 1 |a Mengya Lei  |u School of Computer Science, Hubei University of Technology, Wuhan, 430068, China, Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network, Wuhan, 430068, China 
700 1 |a Zheng, Xiao  |u School of Computer Science, Hubei University of Technology, Wuhan, 430068, China, Hubei Provincial Key Laboratory of Green Intelligent Computing Power Network, Wuhan, 430068, China 
700 1 |a Sun, Jie  |u School of Computer Science, Hubei University of Technology, Wuhan, 430068, China 
700 1 |a Zhou, Jing  |u School of Computer Science, Hubei University of Technology, Wuhan, 430068, China 
700 1 |a Li, Mengxuan  |u School of Computer Science, Hubei University of Technology, Wuhan, 430068, China 
773 0 |t Computers, Materials, & Continua  |g vol. 85, no. 3 (2025), p. 5509-5531 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270084082/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270084082/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch