An Automated Adaptive Finite Element Methodology for 2D Linear Elastic Fatigue Crack Growth Simulation

Spremljeno u:
Bibliografski detalji
Izdano u:Computer Modeling in Engineering & Sciences vol. 145, no. 1 (2025), p. 189-215
Glavni autor: Alshoaibi, Abdulnaser M
Daljnji autori: Yahya Ali Fageehi
Izdano:
Tech Science Press
Teme:
Online pristup:Citation/Abstract
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3270084263
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.32604/cmes.2025.071583  |2 doi 
035 |a 3270084263 
045 2 |b d20250101  |b d20251231 
100 1 |a Alshoaibi, Abdulnaser M  |u Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan, 45142, Saudi Arabia 
245 1 |a An Automated Adaptive Finite Element Methodology for 2D Linear Elastic Fatigue Crack Growth Simulation 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a Fatigue crack growth is a critical phenomenon in engineering structures, accounting for a significant percentage of structural failures across various industries. Accurate prediction of crack initiation, propagation paths, and fatigue life is essential for ensuring structural integrity and optimizing maintenance schedules. This paper presents a comprehensive finite element approach for simulating two-dimensional fatigue crack growth under linear elastic conditions with adaptive mesh generation. The source code for the program was developed in Fortran 95 and compiled with Visual Fortran. To achieve high-fidelity simulations, the methodology integrates several key features: it employs an automatic, adaptive meshing technique that selectively refines the element density near the crack front and areas of significant stress concentration. Specialized singular elements are used at the crack tip to ensure precise stress field representation. The direction of crack advancement is predicted using the maximum tangential stress criterion, while stress intensity factors are determined through either the displacement extrapolation technique or the J-integral method. The simulation models crack growth as a series of linear increments, with solution stability maintained by a consistent transfer algorithm and a crack relaxation method. The framework’s effectiveness is demonstrated across various geometries and loading scenarios. Through rigorous validation against both experimental data and established numerical benchmarks, the approach is proven to accurately forecast crack trajectories and fatigue life. Furthermore, the detailed description of the program’s architecture offers a foundational blueprint, serving as a valuable guide for researchers aiming to develop their specialized software for fracture mechanics analysis. 
653 |a Finite element method 
653 |a Source code 
653 |a Stress concentration 
653 |a Crack propagation 
653 |a Structural integrity 
653 |a Simulation models 
653 |a FORTRAN 
653 |a Relaxation method (mathematics) 
653 |a J integral 
653 |a Maintenance management 
653 |a Crack initiation 
653 |a Stress intensity factors 
653 |a Fatigue failure 
653 |a Fatigue life 
653 |a Fatigue cracks 
653 |a Fracture mechanics 
653 |a Crack tips 
653 |a Stress distribution 
653 |a Computer simulation 
653 |a Mesh generation 
653 |a Structural failure 
700 1 |a Yahya Ali Fageehi  |u Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan, 45142, Saudi Arabia 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 145, no. 1 (2025), p. 189-215 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270084263/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270084263/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch